基于遗传算法的分数阶边缘检测

Wessam S. ElAraby, A. Madian, M. Ashour, Ibrahim Farag, M. Nassef
{"title":"基于遗传算法的分数阶边缘检测","authors":"Wessam S. ElAraby, A. Madian, M. Ashour, Ibrahim Farag, M. Nassef","doi":"10.1109/ICM.2017.8268860","DOIUrl":null,"url":null,"abstract":"In this paper, four different algorithms present a comparative study of edge detection algorithms based on different fractional order differentiation. The first two algorithms present different fractional masks for the edge detection. Then, the other two algorithms use genetic algorithm to get better edge detection using the previous fractional masks. A fully automatic way to get the number of thresholds for each image using K-means principle is used. The performance comparison is done between different fractional algorithms with and without genetic algorithm. The performance comparison upon the addition of salt and pepper noise is evaluated by measuring the peak signal to noise ratio (PSNR) and bit error rate (BER). From results, it can be concluded that fractional edge detection based on genetic algorithm enhances performance.","PeriodicalId":115975,"journal":{"name":"2017 29th International Conference on Microelectronics (ICM)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Fractional edge detection based on genetic algorithm\",\"authors\":\"Wessam S. ElAraby, A. Madian, M. Ashour, Ibrahim Farag, M. Nassef\",\"doi\":\"10.1109/ICM.2017.8268860\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, four different algorithms present a comparative study of edge detection algorithms based on different fractional order differentiation. The first two algorithms present different fractional masks for the edge detection. Then, the other two algorithms use genetic algorithm to get better edge detection using the previous fractional masks. A fully automatic way to get the number of thresholds for each image using K-means principle is used. The performance comparison is done between different fractional algorithms with and without genetic algorithm. The performance comparison upon the addition of salt and pepper noise is evaluated by measuring the peak signal to noise ratio (PSNR) and bit error rate (BER). From results, it can be concluded that fractional edge detection based on genetic algorithm enhances performance.\",\"PeriodicalId\":115975,\"journal\":{\"name\":\"2017 29th International Conference on Microelectronics (ICM)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 29th International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM.2017.8268860\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM.2017.8268860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

本文对基于不同分数阶微分的四种边缘检测算法进行了比较研究。前两种算法为边缘检测提供了不同的分数掩码。然后,另外两种算法使用遗传算法利用之前的分数掩码得到更好的边缘检测。使用K-means原理自动获取每张图像的阈值个数。比较了带遗传算法和不带遗传算法的分数算法的性能。通过测量峰值信噪比(PSNR)和误码率(BER)来评价加入椒盐噪声后的性能对比。结果表明,基于遗传算法的分数阶边缘检测提高了检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractional edge detection based on genetic algorithm
In this paper, four different algorithms present a comparative study of edge detection algorithms based on different fractional order differentiation. The first two algorithms present different fractional masks for the edge detection. Then, the other two algorithms use genetic algorithm to get better edge detection using the previous fractional masks. A fully automatic way to get the number of thresholds for each image using K-means principle is used. The performance comparison is done between different fractional algorithms with and without genetic algorithm. The performance comparison upon the addition of salt and pepper noise is evaluated by measuring the peak signal to noise ratio (PSNR) and bit error rate (BER). From results, it can be concluded that fractional edge detection based on genetic algorithm enhances performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
OFDM signal up and down frequency conversions by a sampling method using a SOA-MZI A solution for channel electron migration in normally-off MIS-HEMT with buried fluorine ions Physical parameter adjustment for a power over fiber device with a self-developed numerical model of optical propagation in the seafloor observatory context Thermal drift compensation of piezoresistive implantable blood pressure sensors with low cost analog solutions Synthesis of a fractional order audio boost filter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1