基于马尔可夫决策过程的多云资源分配算法

G. Oddi, M. Panfili, A. Pietrabissa, L. Zuccaro, V. Suraci
{"title":"基于马尔可夫决策过程的多云资源分配算法","authors":"G. Oddi, M. Panfili, A. Pietrabissa, L. Zuccaro, V. Suraci","doi":"10.1109/CloudCom.2013.24","DOIUrl":null,"url":null,"abstract":"Cloud technologies can nowadays be considered as commodities. The possibility of getting access to storage, computing and networking virtual resources empowers any business that needs dynamic IT capabilities. The Cloud Management Broker (CMB) plays a crucial role to handle heterogeneous virtualized cloud resources in order to offer a unique set of interfaces to the cloud users. Moreover, the CMB is in charge of optimizing the usage of the cloud resources, satisfying the requirements declared by the users. This paper proposes a novel multi-cloud resource allocation algorithm, based on a Markov Decision Process (MDP), capable of dynamically assigning the resources requests to a set of IT resources (storage or computing resources), with the aim of maximizing the expected CMB revenue. Simulation results show the feasibility and the higher performances obtained by the proposed algorithm, compared to a greedy approach.","PeriodicalId":198053,"journal":{"name":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","volume":"110 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"A Resource Allocation Algorithm of Multi-cloud Resources Based on Markov Decision Process\",\"authors\":\"G. Oddi, M. Panfili, A. Pietrabissa, L. Zuccaro, V. Suraci\",\"doi\":\"10.1109/CloudCom.2013.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud technologies can nowadays be considered as commodities. The possibility of getting access to storage, computing and networking virtual resources empowers any business that needs dynamic IT capabilities. The Cloud Management Broker (CMB) plays a crucial role to handle heterogeneous virtualized cloud resources in order to offer a unique set of interfaces to the cloud users. Moreover, the CMB is in charge of optimizing the usage of the cloud resources, satisfying the requirements declared by the users. This paper proposes a novel multi-cloud resource allocation algorithm, based on a Markov Decision Process (MDP), capable of dynamically assigning the resources requests to a set of IT resources (storage or computing resources), with the aim of maximizing the expected CMB revenue. Simulation results show the feasibility and the higher performances obtained by the proposed algorithm, compared to a greedy approach.\",\"PeriodicalId\":198053,\"journal\":{\"name\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"volume\":\"110 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 5th International Conference on Cloud Computing Technology and Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudCom.2013.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 5th International Conference on Cloud Computing Technology and Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudCom.2013.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

摘要

如今,云技术可以被视为商品。访问存储、计算和网络虚拟资源的可能性为任何需要动态IT功能的企业提供了支持。云管理代理(Cloud Management Broker, CMB)在处理异构虚拟化云资源方面起着至关重要的作用,以便向云用户提供一组独特的接口。此外,CMB负责优化云资源的使用,满足用户声明的需求。本文提出了一种基于马尔可夫决策过程(MDP)的多云资源分配算法,能够将资源请求动态分配给一组IT资源(存储或计算资源),以最大化期望CMB收益。仿真结果表明,与贪婪算法相比,该算法具有更高的性能和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Resource Allocation Algorithm of Multi-cloud Resources Based on Markov Decision Process
Cloud technologies can nowadays be considered as commodities. The possibility of getting access to storage, computing and networking virtual resources empowers any business that needs dynamic IT capabilities. The Cloud Management Broker (CMB) plays a crucial role to handle heterogeneous virtualized cloud resources in order to offer a unique set of interfaces to the cloud users. Moreover, the CMB is in charge of optimizing the usage of the cloud resources, satisfying the requirements declared by the users. This paper proposes a novel multi-cloud resource allocation algorithm, based on a Markov Decision Process (MDP), capable of dynamically assigning the resources requests to a set of IT resources (storage or computing resources), with the aim of maximizing the expected CMB revenue. Simulation results show the feasibility and the higher performances obtained by the proposed algorithm, compared to a greedy approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Feasibility Study of Host-Level Contention Detection by Guest Virtual Machines Porting Grid Applications to the Cloud with Schlouder Towards Data Handling Requirements-Aware Cloud Computing Providing Desirable Data to Users When Integrating Wireless Sensor Networks with Mobile Cloud MELA: Monitoring and Analyzing Elasticity of Cloud Services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1