跨空间和频域的显著性检测

Jianhuan Wei, Baojiang Zhong
{"title":"跨空间和频域的显著性检测","authors":"Jianhuan Wei, Baojiang Zhong","doi":"10.1109/ISPACS.2017.8266501","DOIUrl":null,"url":null,"abstract":"Existing saliency detection algorithms work merely in one domain, i.e., spatial domain or frequency domain. This is not sufficient to process different types of images. To overcome this difficulty, we propose an algorithm that could deal with any type of images. Firstly, an image classifier is trained to classify different categories of images. Then, we adopt a strategy to process different types of images with different kinds of saliency detectors. Finally, an enhanced segmentation algorithm is employed to improve the quality of saliency map. Extensive simulation results show that our proposed method outperforms existing seven state-of-the-art algorithms.","PeriodicalId":166414,"journal":{"name":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Saliency detection across spatial and frequency domains\",\"authors\":\"Jianhuan Wei, Baojiang Zhong\",\"doi\":\"10.1109/ISPACS.2017.8266501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing saliency detection algorithms work merely in one domain, i.e., spatial domain or frequency domain. This is not sufficient to process different types of images. To overcome this difficulty, we propose an algorithm that could deal with any type of images. Firstly, an image classifier is trained to classify different categories of images. Then, we adopt a strategy to process different types of images with different kinds of saliency detectors. Finally, an enhanced segmentation algorithm is employed to improve the quality of saliency map. Extensive simulation results show that our proposed method outperforms existing seven state-of-the-art algorithms.\",\"PeriodicalId\":166414,\"journal\":{\"name\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPACS.2017.8266501\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPACS.2017.8266501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

现有的显著性检测算法仅在一个域内工作,即空间域或频率域。这不足以处理不同类型的图像。为了克服这一困难,我们提出了一种可以处理任何类型图像的算法。首先,训练图像分类器对不同类别的图像进行分类。然后,我们采用一种策略,用不同的显著性检测器处理不同类型的图像。最后,采用一种增强的分割算法来提高显著性图的质量。大量的仿真结果表明,我们提出的方法优于现有的七种最先进的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Saliency detection across spatial and frequency domains
Existing saliency detection algorithms work merely in one domain, i.e., spatial domain or frequency domain. This is not sufficient to process different types of images. To overcome this difficulty, we propose an algorithm that could deal with any type of images. Firstly, an image classifier is trained to classify different categories of images. Then, we adopt a strategy to process different types of images with different kinds of saliency detectors. Finally, an enhanced segmentation algorithm is employed to improve the quality of saliency map. Extensive simulation results show that our proposed method outperforms existing seven state-of-the-art algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An anti-copyscheme for laser label based on digitial watermarking A CNN-based segmentation model for segmenting foreground by a probability map A current-feedback method for programming memristor array in bidirectional associative memory Community mining algorithm of complex network based on memetic algorithm Multi-exposure image fusion quality assessment using contrast information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1