一种高效的基因表达数据加权双聚类算法

Y. Jia, Yidong Li, Weihua Liu, Hai-rong Dong
{"title":"一种高效的基因表达数据加权双聚类算法","authors":"Y. Jia, Yidong Li, Weihua Liu, Hai-rong Dong","doi":"10.1109/PDCAT.2016.078","DOIUrl":null,"url":null,"abstract":"Microarrays are one of the latest breakthroughs in experimental molecular biology, which already provide huge amount of valuable gene expression data. Biclustering algorithm was introduced to capture the coherence of a subset of genes and a subset of conditions. In this paper, we presented a MIWB algorithm to find biclusters of gene expression data. MIWB algorithm uses the weighted mutual information as similarity measure which can be simultaneously detected complex linear and nonlinear relationships between genes. Our algorithm first used the weighted mutual information to construct the seed gene set of each biculster, then we calculated each gene's probability belonging to each bicluster and complete the initial partition of genes set utilizing the given threshold, then by optimising the objective function we completed weights update and conditions set selection, by further repartition of the entire dataset and optimization of biclusters we obtained the final biclusters. We evaluated our algorithm on yeast gene expression dataset, and experimental results show that MIWB algorithm can generate large capacity biclusters with lower mean squared residue.","PeriodicalId":203925,"journal":{"name":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Efficient Weighted Biclustering Algorithm for Gene Expression Data\",\"authors\":\"Y. Jia, Yidong Li, Weihua Liu, Hai-rong Dong\",\"doi\":\"10.1109/PDCAT.2016.078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microarrays are one of the latest breakthroughs in experimental molecular biology, which already provide huge amount of valuable gene expression data. Biclustering algorithm was introduced to capture the coherence of a subset of genes and a subset of conditions. In this paper, we presented a MIWB algorithm to find biclusters of gene expression data. MIWB algorithm uses the weighted mutual information as similarity measure which can be simultaneously detected complex linear and nonlinear relationships between genes. Our algorithm first used the weighted mutual information to construct the seed gene set of each biculster, then we calculated each gene's probability belonging to each bicluster and complete the initial partition of genes set utilizing the given threshold, then by optimising the objective function we completed weights update and conditions set selection, by further repartition of the entire dataset and optimization of biclusters we obtained the final biclusters. We evaluated our algorithm on yeast gene expression dataset, and experimental results show that MIWB algorithm can generate large capacity biclusters with lower mean squared residue.\",\"PeriodicalId\":203925,\"journal\":{\"name\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDCAT.2016.078\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 17th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDCAT.2016.078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

微阵列技术是实验分子生物学的最新突破之一,它已经提供了大量有价值的基因表达数据。引入双聚类算法来捕获基因子集和条件子集的一致性。在本文中,我们提出了一种寻找基因表达数据双聚类的MIWB算法。MIWB算法采用加权互信息作为相似性度量,可以同时检测基因之间复杂的线性和非线性关系。该算法首先利用加权互信息构建每个双聚类的种子基因集,然后计算每个基因属于每个双聚类的概率,并利用给定的阈值完成基因集的初始划分,然后通过优化目标函数完成权值更新和条件集选择,再通过对整个数据集的重新划分和对双聚类的优化得到最终的双聚类。在酵母基因表达数据集上对该算法进行了测试,实验结果表明,该算法可以生成均值残差较低的大容量双聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Efficient Weighted Biclustering Algorithm for Gene Expression Data
Microarrays are one of the latest breakthroughs in experimental molecular biology, which already provide huge amount of valuable gene expression data. Biclustering algorithm was introduced to capture the coherence of a subset of genes and a subset of conditions. In this paper, we presented a MIWB algorithm to find biclusters of gene expression data. MIWB algorithm uses the weighted mutual information as similarity measure which can be simultaneously detected complex linear and nonlinear relationships between genes. Our algorithm first used the weighted mutual information to construct the seed gene set of each biculster, then we calculated each gene's probability belonging to each bicluster and complete the initial partition of genes set utilizing the given threshold, then by optimising the objective function we completed weights update and conditions set selection, by further repartition of the entire dataset and optimization of biclusters we obtained the final biclusters. We evaluated our algorithm on yeast gene expression dataset, and experimental results show that MIWB algorithm can generate large capacity biclusters with lower mean squared residue.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Learning-Based System for Monitoring Electrical Load in Smart Grid A Domain-Independent Hybrid Approach for Automatic Taxonomy Induction CUDA-Based Parallel Implementation of IBM Word Alignment Algorithm for Statistical Machine Translation Optimal Scheduling Algorithm of MapReduce Tasks Based on QoS in the Hybrid Cloud Pre-Impact Fall Detection Based on Wearable Device Using Dynamic Threshold Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1