{"title":"构建短语级语义标签,形成多粒度的图像-文本检索监督","authors":"Zhihao Fan, Zhongyu Wei, Zejun Li, Siyuan Wang, Haijun Shan, Xuanjing Huang, Jianqing Fan","doi":"10.1145/3512527.3531368","DOIUrl":null,"url":null,"abstract":"Existing research for image text retrieval mainly relies on sentence-level supervision to distinguish matched and mismatched sentences for a query image. However, semantic mismatch between an image and sentences usually happens in finer grain, i.e., phrase level. In this paper, we explore to introduce additional phrase-level supervision for the better identification of mismatched units in the text. In practice, multi-grained semantic labels are automatically constructed for a query image in both sentence-level and phrase-level. We construct text scene graphs for the matched sentences and extract entities and triples as the phrase-level labels. In order to integrate both supervision of sentence-level and phrase-level, we propose Semantic Structure Aware Multimodal Transformer (SSAMT) for multi-modal representation learning. Inside the SSAMT, we utilize different kinds of attention mechanisms to enforce interactions of multi-grained semantic units in both sides of vision and language. For the training, we propose multi-scale matching from both global and local perspectives, and penalize mismatched phrases. Experimental results on MS-COCO and Flickr30K show the effectiveness of our approach compared to some state-of-the-art models.","PeriodicalId":179895,"journal":{"name":"Proceedings of the 2022 International Conference on Multimedia Retrieval","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Constructing Phrase-level Semantic Labels to Form Multi-Grained Supervision for Image-Text Retrieval\",\"authors\":\"Zhihao Fan, Zhongyu Wei, Zejun Li, Siyuan Wang, Haijun Shan, Xuanjing Huang, Jianqing Fan\",\"doi\":\"10.1145/3512527.3531368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Existing research for image text retrieval mainly relies on sentence-level supervision to distinguish matched and mismatched sentences for a query image. However, semantic mismatch between an image and sentences usually happens in finer grain, i.e., phrase level. In this paper, we explore to introduce additional phrase-level supervision for the better identification of mismatched units in the text. In practice, multi-grained semantic labels are automatically constructed for a query image in both sentence-level and phrase-level. We construct text scene graphs for the matched sentences and extract entities and triples as the phrase-level labels. In order to integrate both supervision of sentence-level and phrase-level, we propose Semantic Structure Aware Multimodal Transformer (SSAMT) for multi-modal representation learning. Inside the SSAMT, we utilize different kinds of attention mechanisms to enforce interactions of multi-grained semantic units in both sides of vision and language. For the training, we propose multi-scale matching from both global and local perspectives, and penalize mismatched phrases. Experimental results on MS-COCO and Flickr30K show the effectiveness of our approach compared to some state-of-the-art models.\",\"PeriodicalId\":179895,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Multimedia Retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3512527.3531368\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Multimedia Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3512527.3531368","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructing Phrase-level Semantic Labels to Form Multi-Grained Supervision for Image-Text Retrieval
Existing research for image text retrieval mainly relies on sentence-level supervision to distinguish matched and mismatched sentences for a query image. However, semantic mismatch between an image and sentences usually happens in finer grain, i.e., phrase level. In this paper, we explore to introduce additional phrase-level supervision for the better identification of mismatched units in the text. In practice, multi-grained semantic labels are automatically constructed for a query image in both sentence-level and phrase-level. We construct text scene graphs for the matched sentences and extract entities and triples as the phrase-level labels. In order to integrate both supervision of sentence-level and phrase-level, we propose Semantic Structure Aware Multimodal Transformer (SSAMT) for multi-modal representation learning. Inside the SSAMT, we utilize different kinds of attention mechanisms to enforce interactions of multi-grained semantic units in both sides of vision and language. For the training, we propose multi-scale matching from both global and local perspectives, and penalize mismatched phrases. Experimental results on MS-COCO and Flickr30K show the effectiveness of our approach compared to some state-of-the-art models.