Adam Khalif, Mehdi Nasrollahpour, Neville Sun, Mohsen Zaeimbashi, Huaihao Chen, Xianfeng Liang, Milad Alemohammad, R. Etienne-Cummings, Nian-Xiang Sun, Sydney Cashl
{"title":"亚毫米级接收器的磁电与感应功率传输","authors":"Adam Khalif, Mehdi Nasrollahpour, Neville Sun, Mohsen Zaeimbashi, Huaihao Chen, Xianfeng Liang, Milad Alemohammad, R. Etienne-Cummings, Nian-Xiang Sun, Sydney Cashl","doi":"10.1109/WPTC51349.2021.9458201","DOIUrl":null,"url":null,"abstract":"Most of the next-generation implantable medical devices that are targeting sub-mm scale form factors are entirely powered wirelessly. The most commonly used form of wireless power transfer for ultra-small receivers is inductive coupling and has been so for many decades. This might change with the advent of novel microfabricated magnetoelectric (ME) antennas which are showing great potential as high-frequency wireless powered receivers. In this paper, we compare these two wireless power delivery methods using receivers that operate at 2.52 GHz with a surface area of 0.043 mm2. Measurement results show that the maximum achievable power transfer of a ME antenna outperforms that of an on-silicon coil by approximately 7 times for a Tx-Rx distance of 2.16 and 3.3 times for a Tx-Rx distance of 0.76 cm.","PeriodicalId":130306,"journal":{"name":"2021 IEEE Wireless Power Transfer Conference (WPTC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Magnetoelectric Versus Inductive Power Delivery for Sub-mm Receivers\",\"authors\":\"Adam Khalif, Mehdi Nasrollahpour, Neville Sun, Mohsen Zaeimbashi, Huaihao Chen, Xianfeng Liang, Milad Alemohammad, R. Etienne-Cummings, Nian-Xiang Sun, Sydney Cashl\",\"doi\":\"10.1109/WPTC51349.2021.9458201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most of the next-generation implantable medical devices that are targeting sub-mm scale form factors are entirely powered wirelessly. The most commonly used form of wireless power transfer for ultra-small receivers is inductive coupling and has been so for many decades. This might change with the advent of novel microfabricated magnetoelectric (ME) antennas which are showing great potential as high-frequency wireless powered receivers. In this paper, we compare these two wireless power delivery methods using receivers that operate at 2.52 GHz with a surface area of 0.043 mm2. Measurement results show that the maximum achievable power transfer of a ME antenna outperforms that of an on-silicon coil by approximately 7 times for a Tx-Rx distance of 2.16 and 3.3 times for a Tx-Rx distance of 0.76 cm.\",\"PeriodicalId\":130306,\"journal\":{\"name\":\"2021 IEEE Wireless Power Transfer Conference (WPTC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Wireless Power Transfer Conference (WPTC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WPTC51349.2021.9458201\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Wireless Power Transfer Conference (WPTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPTC51349.2021.9458201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnetoelectric Versus Inductive Power Delivery for Sub-mm Receivers
Most of the next-generation implantable medical devices that are targeting sub-mm scale form factors are entirely powered wirelessly. The most commonly used form of wireless power transfer for ultra-small receivers is inductive coupling and has been so for many decades. This might change with the advent of novel microfabricated magnetoelectric (ME) antennas which are showing great potential as high-frequency wireless powered receivers. In this paper, we compare these two wireless power delivery methods using receivers that operate at 2.52 GHz with a surface area of 0.043 mm2. Measurement results show that the maximum achievable power transfer of a ME antenna outperforms that of an on-silicon coil by approximately 7 times for a Tx-Rx distance of 2.16 and 3.3 times for a Tx-Rx distance of 0.76 cm.