两种编程环境下基于i向量的说话人识别器的开发

Maroš Jakubec, Eva Lieskovská, R. Jarina
{"title":"两种编程环境下基于i向量的说话人识别器的开发","authors":"Maroš Jakubec, Eva Lieskovská, R. Jarina","doi":"10.1109/NTSP49686.2020.9229552","DOIUrl":null,"url":null,"abstract":"The i-vectors with Probabilistic Linear Discriminative Analysis (PLDA) are known to be one of the latest and most advanced techniques in the field of Automatic Speaker Recognition (ASR). The paper focuses on the development of i-vector/PLDA based the ASR systems in two programming environments, namely Python and MATLAB, which are popular among machine-learning community. Comparative evaluation of system performance, in terms of accuracy and computational requirements, for both platforms is presented.","PeriodicalId":197079,"journal":{"name":"2020 New Trends in Signal Processing (NTSP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Speaker Recognizer Using I-vectors in Two Programming Environments\",\"authors\":\"Maroš Jakubec, Eva Lieskovská, R. Jarina\",\"doi\":\"10.1109/NTSP49686.2020.9229552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The i-vectors with Probabilistic Linear Discriminative Analysis (PLDA) are known to be one of the latest and most advanced techniques in the field of Automatic Speaker Recognition (ASR). The paper focuses on the development of i-vector/PLDA based the ASR systems in two programming environments, namely Python and MATLAB, which are popular among machine-learning community. Comparative evaluation of system performance, in terms of accuracy and computational requirements, for both platforms is presented.\",\"PeriodicalId\":197079,\"journal\":{\"name\":\"2020 New Trends in Signal Processing (NTSP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 New Trends in Signal Processing (NTSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NTSP49686.2020.9229552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NTSP49686.2020.9229552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于概率线性判别分析(PLDA)的i向量是语音自动识别(ASR)领域最新、最先进的技术之一。本文重点研究了基于i-vector/PLDA的ASR系统在机器学习界流行的两种编程环境(Python和MATLAB)中的开发。从精度和计算需求两方面对两种平台的系统性能进行了比较评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Speaker Recognizer Using I-vectors in Two Programming Environments
The i-vectors with Probabilistic Linear Discriminative Analysis (PLDA) are known to be one of the latest and most advanced techniques in the field of Automatic Speaker Recognition (ASR). The paper focuses on the development of i-vector/PLDA based the ASR systems in two programming environments, namely Python and MATLAB, which are popular among machine-learning community. Comparative evaluation of system performance, in terms of accuracy and computational requirements, for both platforms is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Finding the Sensitivity to Transfer Branch by Graphs Simple Filtering Algorithms for the Needs of Measuring UAV Parameters Development of Speaker Recognizer Using I-vectors in Two Programming Environments Parallel Image Signal Processing in a Distributed Car Plate Recognition System The Simulation Model for the Micro-Doppler Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1