深度学习在综合征监测中的相关性过滤:哮喘/呼吸困难的案例研究

Oduwa Edo-Osagie, B. Iglesia, I. Lake, O. Edeghere
{"title":"深度学习在综合征监测中的相关性过滤:哮喘/呼吸困难的案例研究","authors":"Oduwa Edo-Osagie, B. Iglesia, I. Lake, O. Edeghere","doi":"10.5220/0007366904910500","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate deep learning methods that may extract some word context for Twitter mining for syndromic surveillance. Most of the work on syndromic surveillance has been done on the flu or Influenza- Like Illnesses (ILIs). For this reason, we decided to look at a different but equally important syndrome, asthma/difficulty breathing, as this is quite topical given global concerns about the impact of air pollution. We also compare deep learning algorithms for the purpose of filtering Tweets relevant to our syndrome of interest, asthma/difficulty breathing. We make our comparisons using different variants of the F-measure as our evaluation metric because they allow us to emphasise recall over precision, which is important in the context of syndromic surveillance so that we do not lose relevant Tweets in the classification. We then apply our relevance filtering systems based on deep learning algorithms, to the task of syndromic surveillance and compare the results with real-world syndromic surveillance data provided by Public Health England (PHE).We find that the RNN performs best at relevance filtering but can also be slower than other architectures which is important for consideration in real-time application. We also found that the correlation between Twitter and the real-world asthma syndromic surveillance data was positive and improved with the use of the deep- learning-powered relevance filtering. Finally, the deep learning methods enabled us to gather context and word similarity information which we can use to fine tune the vocabulary we employ to extract relevant Tweets in the first place.","PeriodicalId":410036,"journal":{"name":"International Conference on Pattern Recognition Applications and Methods","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Deep Learning for Relevance Filtering in Syndromic Surveillance: A Case Study in Asthma/Difficulty Breathing\",\"authors\":\"Oduwa Edo-Osagie, B. Iglesia, I. Lake, O. Edeghere\",\"doi\":\"10.5220/0007366904910500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate deep learning methods that may extract some word context for Twitter mining for syndromic surveillance. Most of the work on syndromic surveillance has been done on the flu or Influenza- Like Illnesses (ILIs). For this reason, we decided to look at a different but equally important syndrome, asthma/difficulty breathing, as this is quite topical given global concerns about the impact of air pollution. We also compare deep learning algorithms for the purpose of filtering Tweets relevant to our syndrome of interest, asthma/difficulty breathing. We make our comparisons using different variants of the F-measure as our evaluation metric because they allow us to emphasise recall over precision, which is important in the context of syndromic surveillance so that we do not lose relevant Tweets in the classification. We then apply our relevance filtering systems based on deep learning algorithms, to the task of syndromic surveillance and compare the results with real-world syndromic surveillance data provided by Public Health England (PHE).We find that the RNN performs best at relevance filtering but can also be slower than other architectures which is important for consideration in real-time application. We also found that the correlation between Twitter and the real-world asthma syndromic surveillance data was positive and improved with the use of the deep- learning-powered relevance filtering. Finally, the deep learning methods enabled us to gather context and word similarity information which we can use to fine tune the vocabulary we employ to extract relevant Tweets in the first place.\",\"PeriodicalId\":410036,\"journal\":{\"name\":\"International Conference on Pattern Recognition Applications and Methods\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition Applications and Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0007366904910500\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0007366904910500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们研究了深度学习方法,可以提取一些单词上下文,用于Twitter的综合征监测挖掘。大多数综合征监测工作是针对流感或流感样疾病(ILIs)进行的。出于这个原因,我们决定研究一种不同但同样重要的综合症,哮喘/呼吸困难,鉴于全球对空气污染影响的关注,这是一个非常热门的话题。我们还比较了深度学习算法,目的是过滤与我们感兴趣的综合症、哮喘/呼吸困难相关的推文。我们使用f度量的不同变体作为我们的评估指标进行比较,因为它们允许我们强调召回率而不是精度,这在综合征监测的背景下很重要,这样我们就不会在分类中丢失相关的推文。然后,我们将基于深度学习算法的相关过滤系统应用于综合征监测任务,并将结果与英国公共卫生部(PHE)提供的现实世界综合征监测数据进行比较。我们发现RNN在相关性过滤方面表现最好,但也比其他架构慢,这在实时应用中是重要的考虑因素。我们还发现Twitter与真实世界哮喘综合征监测数据之间的相关性是正的,并且通过使用深度学习驱动的相关性过滤得到了改善。最后,深度学习方法使我们能够收集上下文和单词相似度信息,我们可以使用这些信息来微调词汇表,以便首先提取相关的tweet。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning for Relevance Filtering in Syndromic Surveillance: A Case Study in Asthma/Difficulty Breathing
In this paper, we investigate deep learning methods that may extract some word context for Twitter mining for syndromic surveillance. Most of the work on syndromic surveillance has been done on the flu or Influenza- Like Illnesses (ILIs). For this reason, we decided to look at a different but equally important syndrome, asthma/difficulty breathing, as this is quite topical given global concerns about the impact of air pollution. We also compare deep learning algorithms for the purpose of filtering Tweets relevant to our syndrome of interest, asthma/difficulty breathing. We make our comparisons using different variants of the F-measure as our evaluation metric because they allow us to emphasise recall over precision, which is important in the context of syndromic surveillance so that we do not lose relevant Tweets in the classification. We then apply our relevance filtering systems based on deep learning algorithms, to the task of syndromic surveillance and compare the results with real-world syndromic surveillance data provided by Public Health England (PHE).We find that the RNN performs best at relevance filtering but can also be slower than other architectures which is important for consideration in real-time application. We also found that the correlation between Twitter and the real-world asthma syndromic surveillance data was positive and improved with the use of the deep- learning-powered relevance filtering. Finally, the deep learning methods enabled us to gather context and word similarity information which we can use to fine tune the vocabulary we employ to extract relevant Tweets in the first place.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm On Spectrogram Analysis in a Multiple Classifier Fusion Framework for Power Grid Classification Using Electric Network Frequency Semantic Properties of cosine based bias scores for word embeddings Double Trouble? Impact and Detection of Duplicates in Face Image Datasets Detecting Brain Tumors through Multimodal Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1