Gareth Henshall, S. Pop, Marc R. Edwards, L. A. Cenydd, N. John
{"title":"对肾脏活检过程的高保真模拟","authors":"Gareth Henshall, S. Pop, Marc R. Edwards, L. A. Cenydd, N. John","doi":"10.1109/VR.2015.7223360","DOIUrl":null,"url":null,"abstract":"Work in progress for the development of a novel virtual training environment for training a kidney biopsy procedure is presented. Our goal is to provide an affordable high fidelity simulation through the integration of some of the latest off-the-shelf technology components. The range of forces that are encountered during this procedure have been recorded using a custom designed force sensitive glove and then applied within the simulation.","PeriodicalId":231501,"journal":{"name":"2015 IEEE Virtual Reality (VR)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Towards a high fidelity simulation of the kidney biopsy procedure\",\"authors\":\"Gareth Henshall, S. Pop, Marc R. Edwards, L. A. Cenydd, N. John\",\"doi\":\"10.1109/VR.2015.7223360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Work in progress for the development of a novel virtual training environment for training a kidney biopsy procedure is presented. Our goal is to provide an affordable high fidelity simulation through the integration of some of the latest off-the-shelf technology components. The range of forces that are encountered during this procedure have been recorded using a custom designed force sensitive glove and then applied within the simulation.\",\"PeriodicalId\":231501,\"journal\":{\"name\":\"2015 IEEE Virtual Reality (VR)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Virtual Reality (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2015.7223360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Virtual Reality (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2015.7223360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards a high fidelity simulation of the kidney biopsy procedure
Work in progress for the development of a novel virtual training environment for training a kidney biopsy procedure is presented. Our goal is to provide an affordable high fidelity simulation through the integration of some of the latest off-the-shelf technology components. The range of forces that are encountered during this procedure have been recorded using a custom designed force sensitive glove and then applied within the simulation.