基于机器学习技术的智能手套手语识别

P. Rosero-Montalvo, Pamela E. Godoy-Trujillo, Edison Flores-Bosmediano, Jorge Carrascal-García, Santiago Otero-Potosi, Henry Benitez-Pereira, Diego Hernán Peluffo-Ordóñez
{"title":"基于机器学习技术的智能手套手语识别","authors":"P. Rosero-Montalvo, Pamela E. Godoy-Trujillo, Edison Flores-Bosmediano, Jorge Carrascal-García, Santiago Otero-Potosi, Henry Benitez-Pereira, Diego Hernán Peluffo-Ordóñez","doi":"10.1109/ETCM.2018.8580268","DOIUrl":null,"url":null,"abstract":"We present an intelligent electronic glove system able to detect numbers of sign language in order to automate the process of communication between a deaf-mute person and others. This is done by translating the hands move sign language into an oral language. The system is inside to a glove with flex sensors in each finger that we are used to collect data that are analyzed through a methodology involving the following stages: (i) Data balancing with the Kennard-Stone (KS), (ii) Comparison of prototypes selection between CHC evolutionary Algorithm and Decremental Reduction Optimization Procedure 3 (DROP3) to define the best one. Subsequently, the K-Nearest Neighbors (kNN) as classifier (iii) is implemented. As a result, the amount of data reduced from stage (i) from storage within the system is 98%. Also, a classification performance of 85% is achieved with CHC evolutionary algorithm.","PeriodicalId":334574,"journal":{"name":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques\",\"authors\":\"P. Rosero-Montalvo, Pamela E. Godoy-Trujillo, Edison Flores-Bosmediano, Jorge Carrascal-García, Santiago Otero-Potosi, Henry Benitez-Pereira, Diego Hernán Peluffo-Ordóñez\",\"doi\":\"10.1109/ETCM.2018.8580268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an intelligent electronic glove system able to detect numbers of sign language in order to automate the process of communication between a deaf-mute person and others. This is done by translating the hands move sign language into an oral language. The system is inside to a glove with flex sensors in each finger that we are used to collect data that are analyzed through a methodology involving the following stages: (i) Data balancing with the Kennard-Stone (KS), (ii) Comparison of prototypes selection between CHC evolutionary Algorithm and Decremental Reduction Optimization Procedure 3 (DROP3) to define the best one. Subsequently, the K-Nearest Neighbors (kNN) as classifier (iii) is implemented. As a result, the amount of data reduced from stage (i) from storage within the system is 98%. Also, a classification performance of 85% is achieved with CHC evolutionary algorithm.\",\"PeriodicalId\":334574,\"journal\":{\"name\":\"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETCM.2018.8580268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Third Ecuador Technical Chapters Meeting (ETCM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETCM.2018.8580268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

为了实现聋哑人与他人之间交流的自动化,我们提出了一种能够检测手语数量的智能电子手套系统。这是通过将手势语言翻译成口语来实现的。该系统内部是一个手套,每个手指上都有弯曲传感器,我们用来收集数据,通过涉及以下阶段的方法进行分析:(i)与Kennard-Stone (KS)进行数据平衡,(ii)比较CHC进化算法和递减简化优化程序3 (DROP3)之间的原型选择,以确定最佳方案。随后,实现了k近邻(kNN)作为分类器(iii)。因此,从阶段(i)中从系统存储中减少的数据量为98%。CHC进化算法的分类准确率达到85%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques
We present an intelligent electronic glove system able to detect numbers of sign language in order to automate the process of communication between a deaf-mute person and others. This is done by translating the hands move sign language into an oral language. The system is inside to a glove with flex sensors in each finger that we are used to collect data that are analyzed through a methodology involving the following stages: (i) Data balancing with the Kennard-Stone (KS), (ii) Comparison of prototypes selection between CHC evolutionary Algorithm and Decremental Reduction Optimization Procedure 3 (DROP3) to define the best one. Subsequently, the K-Nearest Neighbors (kNN) as classifier (iii) is implemented. As a result, the amount of data reduced from stage (i) from storage within the system is 98%. Also, a classification performance of 85% is achieved with CHC evolutionary algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Solid Waste Management using Georeferenced Multi-agent Systems* Renewable Energy Source P-V conected to the grid through Shunt Active Power Filter based in P-Q theory Lidar Lite v3 Module Performance Evaluation Analysis of Vehicle Flow Using Auto Vehicle Counting Sign Language Recognition Based on Intelligent Glove Using Machine Learning Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1