攻击不确定性下的高斯估计

T. Javidi, Y. Kaspi, Himanshu Tyagi
{"title":"攻击不确定性下的高斯估计","authors":"T. Javidi, Y. Kaspi, Himanshu Tyagi","doi":"10.1109/ITW.2015.7133120","DOIUrl":null,"url":null,"abstract":"We consider the estimation of a standard Gaussian random variable under an observation attack where an adversary may add a zero mean Gaussian noise with variance in a bounded, closed interval to an otherwise noiseless observation. A straightforward approach would entail either ignoring the attack and simply using an optimal estimator under normal operation or taking the worst-case attack into account and using a minimax estimator that minimizes the cost under the worst-case attack. In contrast, we seek to characterize the optimal tradeoff between the MSE under normal operation and the MSE under the worst-case attack. Equivalently, we seek a minimax estimator for any fixed prior probability of attack. Our main result shows that a unique minimax estimator exists for every fixed probability of attack and is given by the Bayesian estimator for a least-favorable prior on the set of possible variances. Furthermore, the least-favorable prior is unique and has a finite support. While the minimax estimator is linear when the probability of attack is 0 or 1, our numerical results show that the minimax linear estimator is far from optimal for all other probabilities of attack and a simple nonlinear estimator does much better.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian estimation under attack uncertainty\",\"authors\":\"T. Javidi, Y. Kaspi, Himanshu Tyagi\",\"doi\":\"10.1109/ITW.2015.7133120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the estimation of a standard Gaussian random variable under an observation attack where an adversary may add a zero mean Gaussian noise with variance in a bounded, closed interval to an otherwise noiseless observation. A straightforward approach would entail either ignoring the attack and simply using an optimal estimator under normal operation or taking the worst-case attack into account and using a minimax estimator that minimizes the cost under the worst-case attack. In contrast, we seek to characterize the optimal tradeoff between the MSE under normal operation and the MSE under the worst-case attack. Equivalently, we seek a minimax estimator for any fixed prior probability of attack. Our main result shows that a unique minimax estimator exists for every fixed probability of attack and is given by the Bayesian estimator for a least-favorable prior on the set of possible variances. Furthermore, the least-favorable prior is unique and has a finite support. While the minimax estimator is linear when the probability of attack is 0 or 1, our numerical results show that the minimax linear estimator is far from optimal for all other probabilities of attack and a simple nonlinear estimator does much better.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在观察攻击下标准高斯随机变量的估计,其中对手可能在有界的封闭区间内添加具有方差的零均值高斯噪声到其他无噪声的观察值。一种直接的方法将需要忽略攻击并在正常操作下简单地使用最优估计器,或者考虑最坏情况攻击并使用最小化最坏情况攻击下成本的最小最大估计器。相反,我们试图描述正常操作下的MSE和最坏情况下的MSE之间的最佳权衡。同样地,我们对任意固定的攻击先验概率寻求极小极大估计量。我们的主要结果表明,对于每一个固定的攻击概率,存在一个唯一的极小极大估计量,并且由可能方差集上的最不利先验的贝叶斯估计量给出。此外,最不利先验是唯一的,具有有限的支持。虽然当攻击概率为0或1时,极大极小估计量是线性的,但我们的数值结果表明,极大极小线性估计量对于所有其他攻击概率都远远不是最优的,而一个简单的非线性估计量做得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Gaussian estimation under attack uncertainty
We consider the estimation of a standard Gaussian random variable under an observation attack where an adversary may add a zero mean Gaussian noise with variance in a bounded, closed interval to an otherwise noiseless observation. A straightforward approach would entail either ignoring the attack and simply using an optimal estimator under normal operation or taking the worst-case attack into account and using a minimax estimator that minimizes the cost under the worst-case attack. In contrast, we seek to characterize the optimal tradeoff between the MSE under normal operation and the MSE under the worst-case attack. Equivalently, we seek a minimax estimator for any fixed prior probability of attack. Our main result shows that a unique minimax estimator exists for every fixed probability of attack and is given by the Bayesian estimator for a least-favorable prior on the set of possible variances. Furthermore, the least-favorable prior is unique and has a finite support. While the minimax estimator is linear when the probability of attack is 0 or 1, our numerical results show that the minimax linear estimator is far from optimal for all other probabilities of attack and a simple nonlinear estimator does much better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degraded broadcast channel: Secrecy outside of a bounded range On compute-and-forward with feedback On the capacity of multihop device-to-device caching networks Lattice index coding for the broadcast channel On the transmission of a bivariate Gaussian source over the Gaussian broadcast channel with feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1