一种用于复杂系统辨识的监督体系结构和混合遗传算法

Linyu Yang, J. Yen, Athirathnam Rajesh, K. D. Kihm
{"title":"一种用于复杂系统辨识的监督体系结构和混合遗传算法","authors":"Linyu Yang, J. Yen, Athirathnam Rajesh, K. D. Kihm","doi":"10.1109/CEC.1999.782513","DOIUrl":null,"url":null,"abstract":"Genetic Algorithms (GA's) have been demonstrated to be a promising search and optimization technique. However, there are two issues regarding applying genetic algorithms to complex system identifications. The first issue is the high computational cost due to their slow convergence. The second issue is its scalability to deal with high dimensional model identification problems. To alleviate the difficulties, we propose a two-layer supervisory model optimization architecture and hybrid GA algorithms. The upper supervisory layer guides the low level optimization algorithm so that the optimization space of the algorithm is gradually reduced. The lower layer uses simplex-GA approach to perform search and numerical optimization within the range defined by the upper layer. Simplex is added as an additional operator of traditional GA to speed up the convergence. We have applied the proposed approach to tomographic reconstruction and the modeling of central metabolism, the results are satisfactory.","PeriodicalId":292523,"journal":{"name":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A supervisory architecture and hybrid GA for the identifications of complex systems\",\"authors\":\"Linyu Yang, J. Yen, Athirathnam Rajesh, K. D. Kihm\",\"doi\":\"10.1109/CEC.1999.782513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Genetic Algorithms (GA's) have been demonstrated to be a promising search and optimization technique. However, there are two issues regarding applying genetic algorithms to complex system identifications. The first issue is the high computational cost due to their slow convergence. The second issue is its scalability to deal with high dimensional model identification problems. To alleviate the difficulties, we propose a two-layer supervisory model optimization architecture and hybrid GA algorithms. The upper supervisory layer guides the low level optimization algorithm so that the optimization space of the algorithm is gradually reduced. The lower layer uses simplex-GA approach to perform search and numerical optimization within the range defined by the upper layer. Simplex is added as an additional operator of traditional GA to speed up the convergence. We have applied the proposed approach to tomographic reconstruction and the modeling of central metabolism, the results are satisfactory.\",\"PeriodicalId\":292523,\"journal\":{\"name\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.1999.782513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.1999.782513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

遗传算法已被证明是一种很有前途的搜索和优化技术。然而,将遗传算法应用于复杂系统识别有两个问题。第一个问题是由于收敛速度慢,计算成本高。第二个问题是它的可扩展性,以处理高维模型识别问题。为了减轻这种困难,我们提出了一种双层监督模型优化架构和混合遗传算法。上层监控层引导底层优化算法,使算法的优化空间逐渐缩小。下层采用简单遗传算法在上层定义的范围内进行搜索和数值优化。将单纯形作为传统遗传算法的附加算子,提高了遗传算法的收敛速度。我们将该方法应用于中心代谢的层析重建和建模,结果令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A supervisory architecture and hybrid GA for the identifications of complex systems
Genetic Algorithms (GA's) have been demonstrated to be a promising search and optimization technique. However, there are two issues regarding applying genetic algorithms to complex system identifications. The first issue is the high computational cost due to their slow convergence. The second issue is its scalability to deal with high dimensional model identification problems. To alleviate the difficulties, we propose a two-layer supervisory model optimization architecture and hybrid GA algorithms. The upper supervisory layer guides the low level optimization algorithm so that the optimization space of the algorithm is gradually reduced. The lower layer uses simplex-GA approach to perform search and numerical optimization within the range defined by the upper layer. Simplex is added as an additional operator of traditional GA to speed up the convergence. We have applied the proposed approach to tomographic reconstruction and the modeling of central metabolism, the results are satisfactory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of a characteristic bimodal convergence-time/mutation-rate feature in evolutionary search Classifier systems evolving multi-agent system with distributed elitism A unified model of non-panmictic population structures in evolutionary algorithms Control of autonomous robots using fuzzy logic controllers tuned by genetic algorithms Oil reservoir production forecasting with uncertainty estimation using genetic algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1