{"title":"基于Lyapunov方法的风能转换系统自整定PID控制","authors":"M. Sedighizadeh, A. Rezazadeh, M. Khatibi","doi":"10.1109/UPEC.2008.4651560","DOIUrl":null,"url":null,"abstract":"Nonlinear characteristics of wind turbines and electric generators necessitate that grid connected wind energy conversion systems (WECS) use nonlinear controls. In this paper, we will propose a self-tuning PID control based on Lyapunov approach for WECS control. This self-tuning PID control is founded on the combination of two controllers, i.e. a self-tuning PID controller, which drives the tracking error to zero with user specified dynamics, and a supervisory controller, based on crude bounds of the systempsilas nonlinearities. The supervisory controller guarantees the stability of closed-loop nonlinear PID control system. The form of the supervisory control and the adaptation law are derived from a Lyapunov analysis of stability. The results are applied to a typical WECS, presenting the ability of the proposed method.","PeriodicalId":287461,"journal":{"name":"2008 43rd International Universities Power Engineering Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A self-tuning PID control for a wind energy conversion system based on the Lyapunov approach\",\"authors\":\"M. Sedighizadeh, A. Rezazadeh, M. Khatibi\",\"doi\":\"10.1109/UPEC.2008.4651560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear characteristics of wind turbines and electric generators necessitate that grid connected wind energy conversion systems (WECS) use nonlinear controls. In this paper, we will propose a self-tuning PID control based on Lyapunov approach for WECS control. This self-tuning PID control is founded on the combination of two controllers, i.e. a self-tuning PID controller, which drives the tracking error to zero with user specified dynamics, and a supervisory controller, based on crude bounds of the systempsilas nonlinearities. The supervisory controller guarantees the stability of closed-loop nonlinear PID control system. The form of the supervisory control and the adaptation law are derived from a Lyapunov analysis of stability. The results are applied to a typical WECS, presenting the ability of the proposed method.\",\"PeriodicalId\":287461,\"journal\":{\"name\":\"2008 43rd International Universities Power Engineering Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 43rd International Universities Power Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UPEC.2008.4651560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 43rd International Universities Power Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UPEC.2008.4651560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A self-tuning PID control for a wind energy conversion system based on the Lyapunov approach
Nonlinear characteristics of wind turbines and electric generators necessitate that grid connected wind energy conversion systems (WECS) use nonlinear controls. In this paper, we will propose a self-tuning PID control based on Lyapunov approach for WECS control. This self-tuning PID control is founded on the combination of two controllers, i.e. a self-tuning PID controller, which drives the tracking error to zero with user specified dynamics, and a supervisory controller, based on crude bounds of the systempsilas nonlinearities. The supervisory controller guarantees the stability of closed-loop nonlinear PID control system. The form of the supervisory control and the adaptation law are derived from a Lyapunov analysis of stability. The results are applied to a typical WECS, presenting the ability of the proposed method.