J. Bessler, L. Schaake, Roy Kelder, J. Buurke, Gerdienke B. Prange-Lasonder
{"title":"评估人体肢体与康复机器人之间相互作用力的原型测量装置-概念验证研究","authors":"J. Bessler, L. Schaake, Roy Kelder, J. Buurke, Gerdienke B. Prange-Lasonder","doi":"10.1109/ICORR.2019.8779536","DOIUrl":null,"url":null,"abstract":"Rehabilitation robots can provide high intensity and dosage training or assist patients in activities of daily living and decrease physical strain on clinicians. However, the physical human robot interaction poses a major safety issue, as the close physical contact between user and robot can lead to injuries. Moreover, the magnitude of forces as well as best practices for measuring them, are widely unknown. Therefore, a measurement setup was developed to assess normal and tangential forces that occur in the contact area between an arm and a splint. Force sensitive resistors and a force / torque sensor were combined with two different splint shapes. Initial experiments indicated that the setup gives some insight into magnitudes and distribution of normal forces on the splint-forearm-interface. Experiment results show a dependency of force distributions on the splint shape and sensor locations. Based on these outcomes, we proposed an improved setup for subsequent investigations.","PeriodicalId":130415,"journal":{"name":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Prototype Measuring Device for Assessing Interaction Forces between Human Limbs and Rehabilitation Robots - A Proof of Concept Study\",\"authors\":\"J. Bessler, L. Schaake, Roy Kelder, J. Buurke, Gerdienke B. Prange-Lasonder\",\"doi\":\"10.1109/ICORR.2019.8779536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rehabilitation robots can provide high intensity and dosage training or assist patients in activities of daily living and decrease physical strain on clinicians. However, the physical human robot interaction poses a major safety issue, as the close physical contact between user and robot can lead to injuries. Moreover, the magnitude of forces as well as best practices for measuring them, are widely unknown. Therefore, a measurement setup was developed to assess normal and tangential forces that occur in the contact area between an arm and a splint. Force sensitive resistors and a force / torque sensor were combined with two different splint shapes. Initial experiments indicated that the setup gives some insight into magnitudes and distribution of normal forces on the splint-forearm-interface. Experiment results show a dependency of force distributions on the splint shape and sensor locations. Based on these outcomes, we proposed an improved setup for subsequent investigations.\",\"PeriodicalId\":130415,\"journal\":{\"name\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2019.8779536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2019.8779536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prototype Measuring Device for Assessing Interaction Forces between Human Limbs and Rehabilitation Robots - A Proof of Concept Study
Rehabilitation robots can provide high intensity and dosage training or assist patients in activities of daily living and decrease physical strain on clinicians. However, the physical human robot interaction poses a major safety issue, as the close physical contact between user and robot can lead to injuries. Moreover, the magnitude of forces as well as best practices for measuring them, are widely unknown. Therefore, a measurement setup was developed to assess normal and tangential forces that occur in the contact area between an arm and a splint. Force sensitive resistors and a force / torque sensor were combined with two different splint shapes. Initial experiments indicated that the setup gives some insight into magnitudes and distribution of normal forces on the splint-forearm-interface. Experiment results show a dependency of force distributions on the splint shape and sensor locations. Based on these outcomes, we proposed an improved setup for subsequent investigations.