设计了非线性磁记录通道的MMSE均衡器

A. Sirirungsakulwong, N. Puttarak, P. Supnithi
{"title":"设计了非线性磁记录通道的MMSE均衡器","authors":"A. Sirirungsakulwong, N. Puttarak, P. Supnithi","doi":"10.1109/ECTICON.2014.6839851","DOIUrl":null,"url":null,"abstract":"Writing process in hard disk drives (HDD) is affected from nonlinearity. Normally, nonlinearity is not easy to be avoided or removed since it is unexpected and caused by various sources. In this paper, we review a description of a nonlinearity behavior by using a Volterra model, and using a random binary number to generate an input data. The Volterra model can describe both linear and nonlinear parts of the read-back signals in terms of the volterra equations. In addition, we propose to use an MMSE method to equalize the read-back signals with nonlinearity using various constraints before applying the Viterbi detector. For a 2nd-order Volterra model, the results show that the equalizer with g1 =1 constraint gives the lowest MMSE values. Furthermore, as the nonlinearity level increases, the bit error rate (BER) performance degrades.","PeriodicalId":347166,"journal":{"name":"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designed MMSE equalizers for nonlinear magnetic recording channels\",\"authors\":\"A. Sirirungsakulwong, N. Puttarak, P. Supnithi\",\"doi\":\"10.1109/ECTICON.2014.6839851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Writing process in hard disk drives (HDD) is affected from nonlinearity. Normally, nonlinearity is not easy to be avoided or removed since it is unexpected and caused by various sources. In this paper, we review a description of a nonlinearity behavior by using a Volterra model, and using a random binary number to generate an input data. The Volterra model can describe both linear and nonlinear parts of the read-back signals in terms of the volterra equations. In addition, we propose to use an MMSE method to equalize the read-back signals with nonlinearity using various constraints before applying the Viterbi detector. For a 2nd-order Volterra model, the results show that the equalizer with g1 =1 constraint gives the lowest MMSE values. Furthermore, as the nonlinearity level increases, the bit error rate (BER) performance degrades.\",\"PeriodicalId\":347166,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2014.6839851\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2014.6839851","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硬盘的写过程受到非线性的影响。通常,非线性是不容易避免或消除的,因为它是意想不到的,并且是由各种来源引起的。在本文中,我们回顾了用Volterra模型来描述非线性行为,并使用随机二进制数来生成输入数据。Volterra模型可以用Volterra方程来描述回读信号的线性和非线性部分。此外,我们建议在应用Viterbi检测器之前,使用MMSE方法来均衡具有非线性的回读信号。对于二阶Volterra模型,结果表明,具有g1 =1约束的均衡器给出的MMSE值最低。此外,随着非线性程度的增加,误码率(BER)性能下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Designed MMSE equalizers for nonlinear magnetic recording channels
Writing process in hard disk drives (HDD) is affected from nonlinearity. Normally, nonlinearity is not easy to be avoided or removed since it is unexpected and caused by various sources. In this paper, we review a description of a nonlinearity behavior by using a Volterra model, and using a random binary number to generate an input data. The Volterra model can describe both linear and nonlinear parts of the read-back signals in terms of the volterra equations. In addition, we propose to use an MMSE method to equalize the read-back signals with nonlinearity using various constraints before applying the Viterbi detector. For a 2nd-order Volterra model, the results show that the equalizer with g1 =1 constraint gives the lowest MMSE values. Furthermore, as the nonlinearity level increases, the bit error rate (BER) performance degrades.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A TDMA baseband design for physiological signal transmission application in 0.18-μm CMOS technology Bandpass filters using stepped impedance resonators and stub loads for wide harmonics suppression Developing policies for channel allocation in Cognitive Radio Networks using Game Theory Hardware-based algorithm for Sine and Cosine computations using fixed point processor Time complexity of finding Compatible Wellness Groups in the Wellness Profile Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1