Manuel Baum, Matthew Bernstein, Roberto Martín-Martín, S. Höfer, Johannes Kulick, M. Toussaint, A. Kacelnik, O. Brock
{"title":"通过物理探索打开一个锁箱","authors":"Manuel Baum, Matthew Bernstein, Roberto Martín-Martín, S. Höfer, Johannes Kulick, M. Toussaint, A. Kacelnik, O. Brock","doi":"10.1109/HUMANOIDS.2017.8246913","DOIUrl":null,"url":null,"abstract":"How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanical puzzles, called lockboxes. Biologists have discovered that cockatoos are intrinsically motivated to explore and solve such problems through physical explorative behavior. In this work, we study how different strategies shape the robots' exploration, given basic perception-action skills. Our evaluation highlights the influence of different statistical priors on the performance of the exploration strategies, showing that not only a range of computational methods, but also a range of priors could explain different exploration behaviors. We carry out our study of exploration strategies both in simulation and on two robot platforms. This first step towards a fully integrated real-world system allowed us to identify and remove limitations of our prior theoretical work on cross-entropy-based exploration when applied to complex realistic scenarios. In this paper we propose novel variants of this strategy and our experiments verify that the cross-entropy method performs well on a physical lockbox analogue of the cockatoo apparatus, and can generalize to lockboxes of different properties.","PeriodicalId":143992,"journal":{"name":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Opening a lockbox through physical exploration\",\"authors\":\"Manuel Baum, Matthew Bernstein, Roberto Martín-Martín, S. Höfer, Johannes Kulick, M. Toussaint, A. Kacelnik, O. Brock\",\"doi\":\"10.1109/HUMANOIDS.2017.8246913\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanical puzzles, called lockboxes. Biologists have discovered that cockatoos are intrinsically motivated to explore and solve such problems through physical explorative behavior. In this work, we study how different strategies shape the robots' exploration, given basic perception-action skills. Our evaluation highlights the influence of different statistical priors on the performance of the exploration strategies, showing that not only a range of computational methods, but also a range of priors could explain different exploration behaviors. We carry out our study of exploration strategies both in simulation and on two robot platforms. This first step towards a fully integrated real-world system allowed us to identify and remove limitations of our prior theoretical work on cross-entropy-based exploration when applied to complex realistic scenarios. In this paper we propose novel variants of this strategy and our experiments verify that the cross-entropy method performs well on a physical lockbox analogue of the cockatoo apparatus, and can generalize to lockboxes of different properties.\",\"PeriodicalId\":143992,\"journal\":{\"name\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HUMANOIDS.2017.8246913\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HUMANOIDS.2017.8246913","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
How can we close the gap between animals and robots when it comes to intelligently interacting with the environment? On our quest for answers, we have investigated the problem of physically exploring complex mechanical puzzles, called lockboxes. Biologists have discovered that cockatoos are intrinsically motivated to explore and solve such problems through physical explorative behavior. In this work, we study how different strategies shape the robots' exploration, given basic perception-action skills. Our evaluation highlights the influence of different statistical priors on the performance of the exploration strategies, showing that not only a range of computational methods, but also a range of priors could explain different exploration behaviors. We carry out our study of exploration strategies both in simulation and on two robot platforms. This first step towards a fully integrated real-world system allowed us to identify and remove limitations of our prior theoretical work on cross-entropy-based exploration when applied to complex realistic scenarios. In this paper we propose novel variants of this strategy and our experiments verify that the cross-entropy method performs well on a physical lockbox analogue of the cockatoo apparatus, and can generalize to lockboxes of different properties.