用于快速接收链路的低延迟无握手GALS接口

Jean-Michel Chabloz, A. Hemani
{"title":"用于快速接收链路的低延迟无握手GALS接口","authors":"Jean-Michel Chabloz, A. Hemani","doi":"10.1109/VLSID.2012.69","DOIUrl":null,"url":null,"abstract":"In this paper we introduce a novel interface for Globally-Asynchronous, Locally-Synchronous systems which does not use any form of handshake to cross the gap between the clock domains. In particular, links in which the Receiver runs faster than the Transmitter are targeted. The interface works by finding an approximate ratio between the clock frequencies. Then, ratiochronous synchronizers that can tolerate clock drifts are employed to transmit data from the Transmitter to the Receiver clock domain. Thanks to the periodic properties of rationally-related systems, no handshake is employed and the average latency of the interface is decreased 75 \\% compared to state-of-the-art GALS interfaces. Additionally, the interface uses only standard cells and, save for a delay line, can be designed at Register Transfer Level.","PeriodicalId":405021,"journal":{"name":"2012 25th International Conference on VLSI Design","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Low-Latency No-Handshake GALS Interfaces for Fast-Receiver Links\",\"authors\":\"Jean-Michel Chabloz, A. Hemani\",\"doi\":\"10.1109/VLSID.2012.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we introduce a novel interface for Globally-Asynchronous, Locally-Synchronous systems which does not use any form of handshake to cross the gap between the clock domains. In particular, links in which the Receiver runs faster than the Transmitter are targeted. The interface works by finding an approximate ratio between the clock frequencies. Then, ratiochronous synchronizers that can tolerate clock drifts are employed to transmit data from the Transmitter to the Receiver clock domain. Thanks to the periodic properties of rationally-related systems, no handshake is employed and the average latency of the interface is decreased 75 \\\\% compared to state-of-the-art GALS interfaces. Additionally, the interface uses only standard cells and, save for a delay line, can be designed at Register Transfer Level.\",\"PeriodicalId\":405021,\"journal\":{\"name\":\"2012 25th International Conference on VLSI Design\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 25th International Conference on VLSI Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSID.2012.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 25th International Conference on VLSI Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSID.2012.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们为全局异步,本地同步系统引入了一种新的接口,它不使用任何形式的握手来跨越时钟域之间的间隙。特别是,目标是接收器运行速度比发送器快的链路。该接口的工作原理是在时钟频率之间找到一个近似的比率。然后,采用可以容忍时钟漂移的异步同步器将数据从发送端传输到接收端时钟域。由于理性相关系统的周期性特性,无需握手,与最先进的GALS接口相比,接口的平均延迟降低了75%。此外,接口只使用标准单元,除了延迟线,可以在寄存器传输级别设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low-Latency No-Handshake GALS Interfaces for Fast-Receiver Links
In this paper we introduce a novel interface for Globally-Asynchronous, Locally-Synchronous systems which does not use any form of handshake to cross the gap between the clock domains. In particular, links in which the Receiver runs faster than the Transmitter are targeted. The interface works by finding an approximate ratio between the clock frequencies. Then, ratiochronous synchronizers that can tolerate clock drifts are employed to transmit data from the Transmitter to the Receiver clock domain. Thanks to the periodic properties of rationally-related systems, no handshake is employed and the average latency of the interface is decreased 75 \% compared to state-of-the-art GALS interfaces. Additionally, the interface uses only standard cells and, save for a delay line, can be designed at Register Transfer Level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Two Graph Based Circuit Simulator for PDE-Electrical Analogy Tutorial T8A: Designing Silicon-Photonic Communication Networks for Manycore Systems Efficient Online RTL Debugging Methodology for Logic Emulation Systems Low-Overhead Maximum Power Point Tracking for Micro-Scale Solar Energy Harvesting Systems A Framework for TSV Serialization-aware Synthesis of Application Specific 3D Networks-on-Chip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1