Papia F. Rozario, E. Ruehmann, T. Pham, Tianqi Sun, Jacob Jensen, Hengrui Jia, Zhongyue Yu, Rahul Gomes
{"title":"基于深度学习补丁的高光谱图像分类方法","authors":"Papia F. Rozario, E. Ruehmann, T. Pham, Tianqi Sun, Jacob Jensen, Hengrui Jia, Zhongyue Yu, Rahul Gomes","doi":"10.1109/eIT57321.2023.10187387","DOIUrl":null,"url":null,"abstract":"Classification of hyperspectral images is an important step of image interpretation from high spatial resolution imagery. Different studies demonstrate that spatial features can provide complementary information for increasing the accuracy of hyperspectral image classification. In this study, we evaluate different methods of spectral-spatial classification of hyperspectral images that are based on denoising methods using convolutional autoencoders. The resulting high-dimensional vectors of spectral features are classified by supervised algorithms such as support vector machine (SVM), maximum likelihood (ML), and random forest (RF). The experiments are performed on several widely known hyperspectral images that reveal a patch-based 3D convolutional autoencoder is more effective in reducing noise in the dataset and retaining spectral-spatial information. Random Forest classifier provides the highest classification accuracy across all the models.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Patch-Based Approach for Hyperspectral Image Classification\",\"authors\":\"Papia F. Rozario, E. Ruehmann, T. Pham, Tianqi Sun, Jacob Jensen, Hengrui Jia, Zhongyue Yu, Rahul Gomes\",\"doi\":\"10.1109/eIT57321.2023.10187387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Classification of hyperspectral images is an important step of image interpretation from high spatial resolution imagery. Different studies demonstrate that spatial features can provide complementary information for increasing the accuracy of hyperspectral image classification. In this study, we evaluate different methods of spectral-spatial classification of hyperspectral images that are based on denoising methods using convolutional autoencoders. The resulting high-dimensional vectors of spectral features are classified by supervised algorithms such as support vector machine (SVM), maximum likelihood (ML), and random forest (RF). The experiments are performed on several widely known hyperspectral images that reveal a patch-based 3D convolutional autoencoder is more effective in reducing noise in the dataset and retaining spectral-spatial information. Random Forest classifier provides the highest classification accuracy across all the models.\",\"PeriodicalId\":113717,\"journal\":{\"name\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Electro Information Technology (eIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eIT57321.2023.10187387\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Learning Patch-Based Approach for Hyperspectral Image Classification
Classification of hyperspectral images is an important step of image interpretation from high spatial resolution imagery. Different studies demonstrate that spatial features can provide complementary information for increasing the accuracy of hyperspectral image classification. In this study, we evaluate different methods of spectral-spatial classification of hyperspectral images that are based on denoising methods using convolutional autoencoders. The resulting high-dimensional vectors of spectral features are classified by supervised algorithms such as support vector machine (SVM), maximum likelihood (ML), and random forest (RF). The experiments are performed on several widely known hyperspectral images that reveal a patch-based 3D convolutional autoencoder is more effective in reducing noise in the dataset and retaining spectral-spatial information. Random Forest classifier provides the highest classification accuracy across all the models.