Doron Chen, George Goldberg, R. Kahn, Ronen I. Kat, K. Meth
{"title":"利用磁盘驱动器声学模式进行电源管理","authors":"Doron Chen, George Goldberg, R. Kahn, Ronen I. Kat, K. Meth","doi":"10.1109/MSST.2010.5496993","DOIUrl":null,"url":null,"abstract":"Reduction of disk drive power consumption is a challenging task, particularly since the most prevalent way of achieving it, powering down idle disks, has many undesirable side-effects. Some hard disk drives support acoustic modes, meaning they can be configured to reduce the acceleration and velocity of the disk head. This reduces instantaneous power consumption but sacrifices performance. As a result, input/output (I/O) operations run longer at reduced power. This is useful for power capping since it causes significant reduction in peak power consumption of the disks. We conducted experiments on several disk drives that support acoustic management. Most of these disk drives support only two modes — quiet and normal. We ran different I/O workloads, including SPC-1 to simulate a real-world online transaction processing workload. We found that the reduction in peak power can reach up to 23% when using quiet mode. We show that for some workloads this translates into a reduction of 12.5% in overall energy consumption. In other workloads we encountered the opposite phenomenon-an increase of more than 6% in the overall energy consumption.","PeriodicalId":350968,"journal":{"name":"2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Leveraging disk drive acoustic modes for power management\",\"authors\":\"Doron Chen, George Goldberg, R. Kahn, Ronen I. Kat, K. Meth\",\"doi\":\"10.1109/MSST.2010.5496993\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reduction of disk drive power consumption is a challenging task, particularly since the most prevalent way of achieving it, powering down idle disks, has many undesirable side-effects. Some hard disk drives support acoustic modes, meaning they can be configured to reduce the acceleration and velocity of the disk head. This reduces instantaneous power consumption but sacrifices performance. As a result, input/output (I/O) operations run longer at reduced power. This is useful for power capping since it causes significant reduction in peak power consumption of the disks. We conducted experiments on several disk drives that support acoustic management. Most of these disk drives support only two modes — quiet and normal. We ran different I/O workloads, including SPC-1 to simulate a real-world online transaction processing workload. We found that the reduction in peak power can reach up to 23% when using quiet mode. We show that for some workloads this translates into a reduction of 12.5% in overall energy consumption. In other workloads we encountered the opposite phenomenon-an increase of more than 6% in the overall energy consumption.\",\"PeriodicalId\":350968,\"journal\":{\"name\":\"2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MSST.2010.5496993\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MSST.2010.5496993","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Leveraging disk drive acoustic modes for power management
Reduction of disk drive power consumption is a challenging task, particularly since the most prevalent way of achieving it, powering down idle disks, has many undesirable side-effects. Some hard disk drives support acoustic modes, meaning they can be configured to reduce the acceleration and velocity of the disk head. This reduces instantaneous power consumption but sacrifices performance. As a result, input/output (I/O) operations run longer at reduced power. This is useful for power capping since it causes significant reduction in peak power consumption of the disks. We conducted experiments on several disk drives that support acoustic management. Most of these disk drives support only two modes — quiet and normal. We ran different I/O workloads, including SPC-1 to simulate a real-world online transaction processing workload. We found that the reduction in peak power can reach up to 23% when using quiet mode. We show that for some workloads this translates into a reduction of 12.5% in overall energy consumption. In other workloads we encountered the opposite phenomenon-an increase of more than 6% in the overall energy consumption.