基于人工神经网络的微波建模及其在嵌入式被动建模中的应用

Q. Zhang, L. Ton, Y. Cao
{"title":"基于人工神经网络的微波建模及其在嵌入式被动建模中的应用","authors":"Q. Zhang, L. Ton, Y. Cao","doi":"10.1109/ICMMT.2007.381409","DOIUrl":null,"url":null,"abstract":"In this paper, artificial neural network (ANN) approaches to modeling of high-frequency effects of embedded passives in multi-layer printed circuits are presented. Recently developed automatic model generation (AMG) methods for efficient training of ANN models are described, allowing ANN models to automatically learn from electromegnetic (EM) behavior of embedded resistors and capacitors. Through fast and accurate EM-based neural models, we enbable consideration of EM effects in high-frequency and high-speed computer-aided design (CAD), including component's geometrical/physical parameters as optimization variables. Demonstration examples including geometrical/physical-orientated neural models of embedded capacitors and resistors are presented.","PeriodicalId":409971,"journal":{"name":"2007 International Conference on Microwave and Millimeter Wave Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Microwave Modeling Using Artificial Neural Networks and Applications to Embedded Passive Modeling\",\"authors\":\"Q. Zhang, L. Ton, Y. Cao\",\"doi\":\"10.1109/ICMMT.2007.381409\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, artificial neural network (ANN) approaches to modeling of high-frequency effects of embedded passives in multi-layer printed circuits are presented. Recently developed automatic model generation (AMG) methods for efficient training of ANN models are described, allowing ANN models to automatically learn from electromegnetic (EM) behavior of embedded resistors and capacitors. Through fast and accurate EM-based neural models, we enbable consideration of EM effects in high-frequency and high-speed computer-aided design (CAD), including component's geometrical/physical parameters as optimization variables. Demonstration examples including geometrical/physical-orientated neural models of embedded capacitors and resistors are presented.\",\"PeriodicalId\":409971,\"journal\":{\"name\":\"2007 International Conference on Microwave and Millimeter Wave Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Microwave and Millimeter Wave Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMMT.2007.381409\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Microwave and Millimeter Wave Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMMT.2007.381409","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种基于人工神经网络的多层印刷电路中嵌入式无源高频效应建模方法。本文介绍了近年来开发的自动模型生成(AMG)方法,用于有效地训练人工神经网络模型,使人工神经网络模型能够从嵌入电阻和电容器的电磁行为中自动学习。通过快速准确的基于电磁的神经模型,我们能够在高频和高速计算机辅助设计(CAD)中考虑电磁效应,包括部件的几何/物理参数作为优化变量。给出了嵌入式电容器和电阻器的几何/物理神经模型的演示示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microwave Modeling Using Artificial Neural Networks and Applications to Embedded Passive Modeling
In this paper, artificial neural network (ANN) approaches to modeling of high-frequency effects of embedded passives in multi-layer printed circuits are presented. Recently developed automatic model generation (AMG) methods for efficient training of ANN models are described, allowing ANN models to automatically learn from electromegnetic (EM) behavior of embedded resistors and capacitors. Through fast and accurate EM-based neural models, we enbable consideration of EM effects in high-frequency and high-speed computer-aided design (CAD), including component's geometrical/physical parameters as optimization variables. Demonstration examples including geometrical/physical-orientated neural models of embedded capacitors and resistors are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PO-MOM Analysis of the Radiation Characteristics of a Yagi-Uda Antenna Enclosed in a Large Kaman Radome A Design of 4-bit "Distributed drive" MEMS Phase Shifters Differential Interferometric Calibration for InSAR System Microwave analog and simulation in open quantum dots Phase Noise Analysis of Phase-Locking Techniques for Nonlinear Active Antenna Arrays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1