{"title":"抓取刚度矩阵——抓取和操作分析中的基本性质","authors":"Ji Li, I. Kao","doi":"10.1109/IROS.1995.526245","DOIUrl":null,"url":null,"abstract":"In this paper, we present fundamental properties of stiffness matrix as applied to analysis of grasping and dextrous manipulation. The investigation unveils insights of stiffness matrix which are important in grasping and manipulation for robotic hands and fingers in R/sup 3/ space. A general grasp stiffness matrix can be broken into two parts-symmetric and antisymmetric. The symmetric part is derived from a conservative quadratic potential function in the Hermitian form; while the antisymmetric part is a function of nonconservative curl vector field of the grasp. The conservative part stores and interchanges energy with the environment with which the fingers make contact. The nonconservative part dissipates or increases energy. The theory suggests that it is possible to introduce a nonsymmetric stiffness matrix in robotic control so as to have energy dissipation (damping) effects. This is useful when passive damping effects are desirable in grasping. Application of the theory to the analysis of stiffness matrix in 3D is presented for analysis of grasping and manipulation.","PeriodicalId":124483,"journal":{"name":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Grasp stiffness matrix-fundamental properties in analysis of grasping and manipulation\",\"authors\":\"Ji Li, I. Kao\",\"doi\":\"10.1109/IROS.1995.526245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present fundamental properties of stiffness matrix as applied to analysis of grasping and dextrous manipulation. The investigation unveils insights of stiffness matrix which are important in grasping and manipulation for robotic hands and fingers in R/sup 3/ space. A general grasp stiffness matrix can be broken into two parts-symmetric and antisymmetric. The symmetric part is derived from a conservative quadratic potential function in the Hermitian form; while the antisymmetric part is a function of nonconservative curl vector field of the grasp. The conservative part stores and interchanges energy with the environment with which the fingers make contact. The nonconservative part dissipates or increases energy. The theory suggests that it is possible to introduce a nonsymmetric stiffness matrix in robotic control so as to have energy dissipation (damping) effects. This is useful when passive damping effects are desirable in grasping. Application of the theory to the analysis of stiffness matrix in 3D is presented for analysis of grasping and manipulation.\",\"PeriodicalId\":124483,\"journal\":{\"name\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.1995.526245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.1995.526245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文给出了刚度矩阵的基本性质,并将其应用于抓握和灵巧操作的分析。该研究揭示了在R/sup /空间中机械手和手指的抓取和操纵中重要的刚度矩阵的见解。一般的抓取刚度矩阵可以分为对称和反对称两部分。对称部分由厄密形式的保守二次势函数导出;而反对称部分则是握柄的非保守旋度向量场的函数。保守部分储存能量,并与手指接触的环境交换能量。非保守部分耗散或增加能量。该理论表明,可以在机器人控制中引入非对称刚度矩阵,从而产生能量耗散(阻尼)效应。当抓取需要被动阻尼效应时,这是有用的。将该理论应用于三维刚度矩阵分析,用于抓取和操作分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grasp stiffness matrix-fundamental properties in analysis of grasping and manipulation
In this paper, we present fundamental properties of stiffness matrix as applied to analysis of grasping and dextrous manipulation. The investigation unveils insights of stiffness matrix which are important in grasping and manipulation for robotic hands and fingers in R/sup 3/ space. A general grasp stiffness matrix can be broken into two parts-symmetric and antisymmetric. The symmetric part is derived from a conservative quadratic potential function in the Hermitian form; while the antisymmetric part is a function of nonconservative curl vector field of the grasp. The conservative part stores and interchanges energy with the environment with which the fingers make contact. The nonconservative part dissipates or increases energy. The theory suggests that it is possible to introduce a nonsymmetric stiffness matrix in robotic control so as to have energy dissipation (damping) effects. This is useful when passive damping effects are desirable in grasping. Application of the theory to the analysis of stiffness matrix in 3D is presented for analysis of grasping and manipulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The automatic detection and visual tracking of moving objects by eye-in-hand robotic systems Decentralized control of robots for dynamic coordination Cooperation between the human operator and the multi-agent robotic system: evaluation of agent monitoring methods for the human interface system Series elastic actuators Toward a seven axis haptic device
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1