Anand Balu Nellippallil, P. Mohan, J. Allen, F. Mistree
{"title":"钢棒热轧过程热力逆加工(ITMP)设计","authors":"Anand Balu Nellippallil, P. Mohan, J. Allen, F. Mistree","doi":"10.1115/detc2019-97390","DOIUrl":null,"url":null,"abstract":"\n The production of steel products involves a series of manufacturing processes. The material Thermo-Mechanical Processing (TMP) history at each process affects the final properties and performances of the product. Experiments and plant trials to predict these properties and performance of steel products are expensive and time consuming. This has resulted in the need for computational design methods and tools that support a human designer in realizing such complex systems involving the material, product and manufacturing processes from a simulation-based design perspective.\n In this paper, we present a Goal-oriented Inverse Design method to achieve the integrated design exploration of materials, products and manufacturing processes. The key functionality offered is the capability to carry out a microstructure-mediated design satisficing specific processing requirements and performance goals of the product. Given models to establish the information flow chain, a designer can use the method for the decision-based design exploration of material microstructure and processing paths to realize products in a manufacturing process chain. The efficacy of the method is tested using an industry-inspired hot rolling problem to inversely design the thermo-mechanical processing of a steel rod. The focus here is the method and associated design constructs which are generic and support the formulation and decision-based design of similar problems involving materials, products and associated manufacturing processes.","PeriodicalId":365601,"journal":{"name":"Volume 2A: 45th Design Automation Conference","volume":"457 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Inverse Thermo-Mechanical Processing (ITMP) Design of a Steel Rod During Hot Rolling Process\",\"authors\":\"Anand Balu Nellippallil, P. Mohan, J. Allen, F. Mistree\",\"doi\":\"10.1115/detc2019-97390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The production of steel products involves a series of manufacturing processes. The material Thermo-Mechanical Processing (TMP) history at each process affects the final properties and performances of the product. Experiments and plant trials to predict these properties and performance of steel products are expensive and time consuming. This has resulted in the need for computational design methods and tools that support a human designer in realizing such complex systems involving the material, product and manufacturing processes from a simulation-based design perspective.\\n In this paper, we present a Goal-oriented Inverse Design method to achieve the integrated design exploration of materials, products and manufacturing processes. The key functionality offered is the capability to carry out a microstructure-mediated design satisficing specific processing requirements and performance goals of the product. Given models to establish the information flow chain, a designer can use the method for the decision-based design exploration of material microstructure and processing paths to realize products in a manufacturing process chain. The efficacy of the method is tested using an industry-inspired hot rolling problem to inversely design the thermo-mechanical processing of a steel rod. The focus here is the method and associated design constructs which are generic and support the formulation and decision-based design of similar problems involving materials, products and associated manufacturing processes.\",\"PeriodicalId\":365601,\"journal\":{\"name\":\"Volume 2A: 45th Design Automation Conference\",\"volume\":\"457 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2A: 45th Design Automation Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2A: 45th Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inverse Thermo-Mechanical Processing (ITMP) Design of a Steel Rod During Hot Rolling Process
The production of steel products involves a series of manufacturing processes. The material Thermo-Mechanical Processing (TMP) history at each process affects the final properties and performances of the product. Experiments and plant trials to predict these properties and performance of steel products are expensive and time consuming. This has resulted in the need for computational design methods and tools that support a human designer in realizing such complex systems involving the material, product and manufacturing processes from a simulation-based design perspective.
In this paper, we present a Goal-oriented Inverse Design method to achieve the integrated design exploration of materials, products and manufacturing processes. The key functionality offered is the capability to carry out a microstructure-mediated design satisficing specific processing requirements and performance goals of the product. Given models to establish the information flow chain, a designer can use the method for the decision-based design exploration of material microstructure and processing paths to realize products in a manufacturing process chain. The efficacy of the method is tested using an industry-inspired hot rolling problem to inversely design the thermo-mechanical processing of a steel rod. The focus here is the method and associated design constructs which are generic and support the formulation and decision-based design of similar problems involving materials, products and associated manufacturing processes.