基于内容的Delaunay三角分割医学图像检索

Sneha Kugunavar, C. J. Prabhakar
{"title":"基于内容的Delaunay三角分割医学图像检索","authors":"Sneha Kugunavar, C. J. Prabhakar","doi":"10.4018/JITR.2021040103","DOIUrl":null,"url":null,"abstract":"This article presents a novel technique for retrieval of lung images from the collection of medical CT images. The proposed content-based medical image retrieval (CBMIR) technique uses an automated image segmentation technique called Delaunay triangulation (DT) in order to segment lung organ (region of interest) from the original medical image. The proposed method extracts novel and discriminant features from the segmented lung region instead of extracting novel features from the whole original image. For the extraction of shape features, the authors employ edge histogram descriptor (EHD) and geometric moments (GM), and for the extraction of texture features, the authors use gray-level co-occurrence matrix (GLCM) technique. The shape and texture features are combined to form the hybrid feature which is used for retrieval of similar lung images. The proposed method is evaluated using two benchmark datasets of lung CT images. The simulation results prove that the proposed CBMIR framework shows improved performance in terms of retrieval accuracy and retrieval time.","PeriodicalId":296080,"journal":{"name":"J. Inf. Technol. Res.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Content-Based Medical Image Retrieval Using Delaunay Triangulation Segmentation Technique\",\"authors\":\"Sneha Kugunavar, C. J. Prabhakar\",\"doi\":\"10.4018/JITR.2021040103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a novel technique for retrieval of lung images from the collection of medical CT images. The proposed content-based medical image retrieval (CBMIR) technique uses an automated image segmentation technique called Delaunay triangulation (DT) in order to segment lung organ (region of interest) from the original medical image. The proposed method extracts novel and discriminant features from the segmented lung region instead of extracting novel features from the whole original image. For the extraction of shape features, the authors employ edge histogram descriptor (EHD) and geometric moments (GM), and for the extraction of texture features, the authors use gray-level co-occurrence matrix (GLCM) technique. The shape and texture features are combined to form the hybrid feature which is used for retrieval of similar lung images. The proposed method is evaluated using two benchmark datasets of lung CT images. The simulation results prove that the proposed CBMIR framework shows improved performance in terms of retrieval accuracy and retrieval time.\",\"PeriodicalId\":296080,\"journal\":{\"name\":\"J. Inf. Technol. Res.\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Inf. Technol. Res.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/JITR.2021040103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Inf. Technol. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/JITR.2021040103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了一种从医学CT图像集合中检索肺部图像的新技术。提出了一种基于内容的医学图像检索(CBMIR)技术,该技术使用一种称为Delaunay三角剖分(DT)的自动图像分割技术从原始医学图像中分割出肺器官(感兴趣区域)。该方法不需要从整个原始图像中提取新的特征,而是从分割后的肺区域中提取新的特征和判别特征。形状特征提取采用边缘直方图描述子(EHD)和几何矩(GM),纹理特征提取采用灰度共生矩阵(GLCM)技术。将形状特征和纹理特征相结合形成混合特征,用于相似肺图像的检索。使用两个肺CT图像基准数据集对所提出的方法进行了评估。仿真结果表明,所提出的CBMIR框架在检索精度和检索时间方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Content-Based Medical Image Retrieval Using Delaunay Triangulation Segmentation Technique
This article presents a novel technique for retrieval of lung images from the collection of medical CT images. The proposed content-based medical image retrieval (CBMIR) technique uses an automated image segmentation technique called Delaunay triangulation (DT) in order to segment lung organ (region of interest) from the original medical image. The proposed method extracts novel and discriminant features from the segmented lung region instead of extracting novel features from the whole original image. For the extraction of shape features, the authors employ edge histogram descriptor (EHD) and geometric moments (GM), and for the extraction of texture features, the authors use gray-level co-occurrence matrix (GLCM) technique. The shape and texture features are combined to form the hybrid feature which is used for retrieval of similar lung images. The proposed method is evaluated using two benchmark datasets of lung CT images. The simulation results prove that the proposed CBMIR framework shows improved performance in terms of retrieval accuracy and retrieval time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Benchmarking Serverless Computing: Performance and Usability MAC Protocol Analysis for Wireless Sensor Networks Prognostic Model for the Risk of Coronavirus Disease (COVID-19) Using Fuzzy Logic Modeling Evaluation of Teachers' Innovation and Entrepreneurship Ability in Universities Based on Artificial Neural Networks Cluster-Based Vehicle Routing on Road Segments in Dematerialised Traffic Infrastructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1