基于深度神经网络的各向异性介质地震矩张量反演

Germn I. Brunini, D. Velis, Juan I. Sabbione
{"title":"基于深度神经网络的各向异性介质地震矩张量反演","authors":"Germn I. Brunini, D. Velis, Juan I. Sabbione","doi":"10.1109/RPIC53795.2021.9648414","DOIUrl":null,"url":null,"abstract":"We design a deep neural network (DNN) and train it to invert the focal mechanism of microseismic events that occur during a hydraulic fracture treatment of unconventional reservoirs. For the testing, we generate synthetic microseismic events in anisotropic 3D media and consider a realistic dual-well monitoring scenario. We show that for this geometry a trained DNN can successfully retrieve the six independent elements of the moment tensor. We statistically analyze the correlation coefficients and relative errors of the results and demonstrate that the moment tensor can be accurately estimated using the proposed DNN, providing a reliable alternative to other conventional inversion techniques.","PeriodicalId":299649,"journal":{"name":"2021 XIX Workshop on Information Processing and Control (RPIC)","volume":"211 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seismic Moment Tensor Inversion in Anisotropic Media using Deep Neural Networks\",\"authors\":\"Germn I. Brunini, D. Velis, Juan I. Sabbione\",\"doi\":\"10.1109/RPIC53795.2021.9648414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We design a deep neural network (DNN) and train it to invert the focal mechanism of microseismic events that occur during a hydraulic fracture treatment of unconventional reservoirs. For the testing, we generate synthetic microseismic events in anisotropic 3D media and consider a realistic dual-well monitoring scenario. We show that for this geometry a trained DNN can successfully retrieve the six independent elements of the moment tensor. We statistically analyze the correlation coefficients and relative errors of the results and demonstrate that the moment tensor can be accurately estimated using the proposed DNN, providing a reliable alternative to other conventional inversion techniques.\",\"PeriodicalId\":299649,\"journal\":{\"name\":\"2021 XIX Workshop on Information Processing and Control (RPIC)\",\"volume\":\"211 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 XIX Workshop on Information Processing and Control (RPIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RPIC53795.2021.9648414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 XIX Workshop on Information Processing and Control (RPIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RPIC53795.2021.9648414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们设计了一个深度神经网络(DNN),并对其进行训练,以反演非常规油藏水力压裂处理过程中发生的微地震事件的震源机制。为了进行测试,我们在各向异性三维介质中生成了合成微地震事件,并考虑了一个现实的双井监测场景。我们表明,对于这种几何形状,训练好的DNN可以成功地检索力矩张量的六个独立元素。我们统计分析了结果的相关系数和相对误差,并证明了使用所提出的深度神经网络可以准确估计矩张量,为其他常规反演技术提供了可靠的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seismic Moment Tensor Inversion in Anisotropic Media using Deep Neural Networks
We design a deep neural network (DNN) and train it to invert the focal mechanism of microseismic events that occur during a hydraulic fracture treatment of unconventional reservoirs. For the testing, we generate synthetic microseismic events in anisotropic 3D media and consider a realistic dual-well monitoring scenario. We show that for this geometry a trained DNN can successfully retrieve the six independent elements of the moment tensor. We statistically analyze the correlation coefficients and relative errors of the results and demonstrate that the moment tensor can be accurately estimated using the proposed DNN, providing a reliable alternative to other conventional inversion techniques.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of actual evapotranspiration using NASA-POWER data and Support Vector Machine Control of COVID-19 Outbreak for Preventing Collapse of Healthcare Capacity Parametric study of limiting cell design variables in a lithium battery pack Current-sensors fault tolerant control system for electric drives: experimental validation Seismic Moment Tensor Inversion in Anisotropic Media using Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1