基于支持向量机的白血病细胞图像纹理和形状特征性能比较

Y. Jusman, Ega Samudra, S. Riyadi, Siti Nurul Aqmariah Mohd Kanafiah, A. Faisal, R. Hassan, Z. Mohamed
{"title":"基于支持向量机的白血病细胞图像纹理和形状特征性能比较","authors":"Y. Jusman, Ega Samudra, S. Riyadi, Siti Nurul Aqmariah Mohd Kanafiah, A. Faisal, R. Hassan, Z. Mohamed","doi":"10.1109/ice3is54102.2021.9649683","DOIUrl":null,"url":null,"abstract":"Leukemia or often called blood cancer is one type of cancer caused by excessive white blood cells. Excessive white blood cells will cause disruption of normal function of other blood cells. To find out leukemia, we can do a physical examination in the form of a blood sample or can also use a spinal cord biopsy. In general, doctors take blood samples to see and look for abnormalities of the white blood cell count. To reduce human error in diagnosing leukemia, the study created two systems that can classify leukemia using the Hu moment invariant (HMI) and Support Vector Machine (SVM) methods and the Grey Level Co-occurance Matrix (GLCM) and SVM methods. Classification systems are used to classify acute and normal leukemia image classes using 10-fold cross validation in the sharing of its image data. The best classification results are the GLCM -SVM system with an accuracy value of 99% and the HMI-SVM system produces an accuracy value of 90%.","PeriodicalId":134945,"journal":{"name":"2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparison of Texture and Shape Features Performance for Leukemia Cell Images using Support Vector Machine\",\"authors\":\"Y. Jusman, Ega Samudra, S. Riyadi, Siti Nurul Aqmariah Mohd Kanafiah, A. Faisal, R. Hassan, Z. Mohamed\",\"doi\":\"10.1109/ice3is54102.2021.9649683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Leukemia or often called blood cancer is one type of cancer caused by excessive white blood cells. Excessive white blood cells will cause disruption of normal function of other blood cells. To find out leukemia, we can do a physical examination in the form of a blood sample or can also use a spinal cord biopsy. In general, doctors take blood samples to see and look for abnormalities of the white blood cell count. To reduce human error in diagnosing leukemia, the study created two systems that can classify leukemia using the Hu moment invariant (HMI) and Support Vector Machine (SVM) methods and the Grey Level Co-occurance Matrix (GLCM) and SVM methods. Classification systems are used to classify acute and normal leukemia image classes using 10-fold cross validation in the sharing of its image data. The best classification results are the GLCM -SVM system with an accuracy value of 99% and the HMI-SVM system produces an accuracy value of 90%.\",\"PeriodicalId\":134945,\"journal\":{\"name\":\"2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ice3is54102.2021.9649683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 1st International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ice3is54102.2021.9649683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

白血病或常被称为血癌是一种由白细胞过多引起的癌症。过多的白细胞会破坏其他血细胞的正常功能。为了发现白血病,我们可以做血液样本形式的身体检查,也可以使用脊髓活检。一般来说,医生采集血液样本来观察和寻找白细胞计数的异常。为了减少诊断白血病的人为错误,本研究使用Hu矩不变(HMI)和支持向量机(SVM)方法以及灰度共生矩阵(GLCM)和支持向量机(SVM)方法创建了两个白血病分类系统。分类系统用于分类急性和正常白血病图像类使用10倍交叉验证在其图像数据共享。其中,GLCM -SVM系统的分类准确率为99%,HMI-SVM系统的分类准确率为90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Texture and Shape Features Performance for Leukemia Cell Images using Support Vector Machine
Leukemia or often called blood cancer is one type of cancer caused by excessive white blood cells. Excessive white blood cells will cause disruption of normal function of other blood cells. To find out leukemia, we can do a physical examination in the form of a blood sample or can also use a spinal cord biopsy. In general, doctors take blood samples to see and look for abnormalities of the white blood cell count. To reduce human error in diagnosing leukemia, the study created two systems that can classify leukemia using the Hu moment invariant (HMI) and Support Vector Machine (SVM) methods and the Grey Level Co-occurance Matrix (GLCM) and SVM methods. Classification systems are used to classify acute and normal leukemia image classes using 10-fold cross validation in the sharing of its image data. The best classification results are the GLCM -SVM system with an accuracy value of 99% and the HMI-SVM system produces an accuracy value of 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Homepage [Copyright notice] Cervical Precancerous Classification System based on Texture Features and Support Vector Machine Mamdani fuzzy logic-based smart measuring device as quality determination for grain post-harvest technology Comparison of Texture and Shape Features Performance for Leukemia Cell Images using Support Vector Machine Analysis of Beta Testing Performance for Lecturer Monitoring System: (Case Study: Abdurrab University)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1