Chengxi Liu, Zhen Gong, Filipe Faria da Silva, Qiupin Lai, Pan Hu
{"title":"网状电力系统交流输电线路谐波空间传播研究","authors":"Chengxi Liu, Zhen Gong, Filipe Faria da Silva, Qiupin Lai, Pan Hu","doi":"10.1049/cds2.12107","DOIUrl":null,"url":null,"abstract":"<p>Severe harmonics propagation in power systems may result in increased power losses and equipment damages. In this paper, an elliptic formula is derived to analyse the harmonic spatial distribution not only at the substations but also along the power lines or cables and to give a system-wide overview of harmonic levels. It is observed that harmonic distortion along power lines can be higher than that at the busbars and the maximum amplitude of harmonic voltage and current denoted as weak positions along power lines depends on the steady-state harmonic angle difference of voltage and current at busbars, the length of power lines, and the harmonic order. All cases are modelled in detail by analytical geometry and analysed in MATLAB. In this regard, a method to identify the weak positions in terms of maximum harmonic levels in a power system is presented, and its corresponding harmonic orders are determined. The accuracy of the model is tested using time-domain simulations in PSCAD/EMTDC.</p>","PeriodicalId":50386,"journal":{"name":"Iet Circuits Devices & Systems","volume":"16 4","pages":"337-349"},"PeriodicalIF":1.0000,"publicationDate":"2022-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12107","citationCount":"1","resultStr":"{\"title\":\"A study of harmonic spatial propagation along AC power lines of meshed power systems\",\"authors\":\"Chengxi Liu, Zhen Gong, Filipe Faria da Silva, Qiupin Lai, Pan Hu\",\"doi\":\"10.1049/cds2.12107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Severe harmonics propagation in power systems may result in increased power losses and equipment damages. In this paper, an elliptic formula is derived to analyse the harmonic spatial distribution not only at the substations but also along the power lines or cables and to give a system-wide overview of harmonic levels. It is observed that harmonic distortion along power lines can be higher than that at the busbars and the maximum amplitude of harmonic voltage and current denoted as weak positions along power lines depends on the steady-state harmonic angle difference of voltage and current at busbars, the length of power lines, and the harmonic order. All cases are modelled in detail by analytical geometry and analysed in MATLAB. In this regard, a method to identify the weak positions in terms of maximum harmonic levels in a power system is presented, and its corresponding harmonic orders are determined. The accuracy of the model is tested using time-domain simulations in PSCAD/EMTDC.</p>\",\"PeriodicalId\":50386,\"journal\":{\"name\":\"Iet Circuits Devices & Systems\",\"volume\":\"16 4\",\"pages\":\"337-349\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cds2.12107\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Circuits Devices & Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12107\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Circuits Devices & Systems","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cds2.12107","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A study of harmonic spatial propagation along AC power lines of meshed power systems
Severe harmonics propagation in power systems may result in increased power losses and equipment damages. In this paper, an elliptic formula is derived to analyse the harmonic spatial distribution not only at the substations but also along the power lines or cables and to give a system-wide overview of harmonic levels. It is observed that harmonic distortion along power lines can be higher than that at the busbars and the maximum amplitude of harmonic voltage and current denoted as weak positions along power lines depends on the steady-state harmonic angle difference of voltage and current at busbars, the length of power lines, and the harmonic order. All cases are modelled in detail by analytical geometry and analysed in MATLAB. In this regard, a method to identify the weak positions in terms of maximum harmonic levels in a power system is presented, and its corresponding harmonic orders are determined. The accuracy of the model is tested using time-domain simulations in PSCAD/EMTDC.
期刊介绍:
IET Circuits, Devices & Systems covers the following topics:
Circuit theory and design, circuit analysis and simulation, computer aided design
Filters (analogue and switched capacitor)
Circuit implementations, cells and architectures for integration including VLSI
Testability, fault tolerant design, minimisation of circuits and CAD for VLSI
Novel or improved electronic devices for both traditional and emerging technologies including nanoelectronics and MEMs
Device and process characterisation, device parameter extraction schemes
Mathematics of circuits and systems theory
Test and measurement techniques involving electronic circuits, circuits for industrial applications, sensors and transducers