消防移动机器人的声音识别

Eli M. Baum, Mario Harper, Ryan Alicea, Camilo Ordonez
{"title":"消防移动机器人的声音识别","authors":"Eli M. Baum, Mario Harper, Ryan Alicea, Camilo Ordonez","doi":"10.1109/IRC.2018.00020","DOIUrl":null,"url":null,"abstract":"A structure engulfed in flames can pose an extreme danger for fire-fighting personnel as well as any people trapped inside. A companion robot to assist the fire-fighters could potentially help speed up the search for humans while reducing risk for the fire-fighters. However, robots operating in these environments need to be able to operate in very low visibility conditions because of the heavy smoke, debris and unstructured terrain. This paper develops an audio classification algorithm to identify sounds relevant to fire-fighting such as people in distress (baby cries, screams, coughs), structural failure (wood snapping, glass breaking), fire, fire trucks, and crowds. The outputs of the classifier are then used as alerts for the fire-fighter or to modify the configuration of a robot capable of navigating unstructured terrain. The approach used extracts an array of features from audio recordings and employs a single hidden layer, feed forward neural network for classification. The simplicity in network structure enables performance on limited hardware and obtains classification results with an overall accuracy of 85.7%.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Sound Identification for Fire-Fighting Mobile Robots\",\"authors\":\"Eli M. Baum, Mario Harper, Ryan Alicea, Camilo Ordonez\",\"doi\":\"10.1109/IRC.2018.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A structure engulfed in flames can pose an extreme danger for fire-fighting personnel as well as any people trapped inside. A companion robot to assist the fire-fighters could potentially help speed up the search for humans while reducing risk for the fire-fighters. However, robots operating in these environments need to be able to operate in very low visibility conditions because of the heavy smoke, debris and unstructured terrain. This paper develops an audio classification algorithm to identify sounds relevant to fire-fighting such as people in distress (baby cries, screams, coughs), structural failure (wood snapping, glass breaking), fire, fire trucks, and crowds. The outputs of the classifier are then used as alerts for the fire-fighter or to modify the configuration of a robot capable of navigating unstructured terrain. The approach used extracts an array of features from audio recordings and employs a single hidden layer, feed forward neural network for classification. The simplicity in network structure enables performance on limited hardware and obtains classification results with an overall accuracy of 85.7%.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

被火焰吞没的建筑物会给消防人员和被困在里面的人带来极大的危险。一个辅助消防员的同伴机器人可能有助于加快对人类的搜索,同时降低消防员的风险。然而,在这些环境中操作的机器人需要能够在能见度非常低的条件下操作,因为浓烟、碎片和非结构化地形。本文开发了一种音频分类算法,用于识别与消防相关的声音,如遇险人员(婴儿哭声、尖叫声、咳嗽声)、结构损坏(木材断裂、玻璃破碎)、火灾、消防车和人群。然后,分类器的输出用作消防员的警报,或修改能够在非结构化地形中导航的机器人的配置。该方法从音频记录中提取一系列特征,并使用单个隐藏层,前馈神经网络进行分类。网络结构的简单性使其能够在有限的硬件上实现性能,并获得总体准确率为85.7%的分类结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sound Identification for Fire-Fighting Mobile Robots
A structure engulfed in flames can pose an extreme danger for fire-fighting personnel as well as any people trapped inside. A companion robot to assist the fire-fighters could potentially help speed up the search for humans while reducing risk for the fire-fighters. However, robots operating in these environments need to be able to operate in very low visibility conditions because of the heavy smoke, debris and unstructured terrain. This paper develops an audio classification algorithm to identify sounds relevant to fire-fighting such as people in distress (baby cries, screams, coughs), structural failure (wood snapping, glass breaking), fire, fire trucks, and crowds. The outputs of the classifier are then used as alerts for the fire-fighter or to modify the configuration of a robot capable of navigating unstructured terrain. The approach used extracts an array of features from audio recordings and employs a single hidden layer, feed forward neural network for classification. The simplicity in network structure enables performance on limited hardware and obtains classification results with an overall accuracy of 85.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1