基于进化蚁群算法的模糊分类系统归纳

M. S. Abadeh, J. Habibi, Emad Soroush
{"title":"基于进化蚁群算法的模糊分类系统归纳","authors":"M. S. Abadeh, J. Habibi, Emad Soroush","doi":"10.1109/AMS.2007.53","DOIUrl":null,"url":null,"abstract":"In this paper we have proposed an evolutionary algorithm to induct fuzzy classification rules. The algorithm uses an ant colony optimization based local searcher to improve the quality of final fuzzy classification system. The proposed algorithm is performed on intrusion detection as a high-dimensional classification problem. Results show that the implemented evolutionary ACO-Based algorithm is capable of producing a reliable fuzzy rule based classifier for intrusion detection","PeriodicalId":198751,"journal":{"name":"First Asia International Conference on Modelling & Simulation (AMS'07)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"Induction of Fuzzy Classification Systems Using Evolutionary ACO-Based Algorithms\",\"authors\":\"M. S. Abadeh, J. Habibi, Emad Soroush\",\"doi\":\"10.1109/AMS.2007.53\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we have proposed an evolutionary algorithm to induct fuzzy classification rules. The algorithm uses an ant colony optimization based local searcher to improve the quality of final fuzzy classification system. The proposed algorithm is performed on intrusion detection as a high-dimensional classification problem. Results show that the implemented evolutionary ACO-Based algorithm is capable of producing a reliable fuzzy rule based classifier for intrusion detection\",\"PeriodicalId\":198751,\"journal\":{\"name\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"volume\":\"104 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First Asia International Conference on Modelling & Simulation (AMS'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AMS.2007.53\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First Asia International Conference on Modelling & Simulation (AMS'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2007.53","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

摘要

本文提出了一种引入模糊分类规则的进化算法。该算法使用基于蚁群优化的局部搜索器来提高最终模糊分类系统的质量。该算法将入侵检测作为一个高维分类问题来执行。结果表明,所实现的基于进化蚁群算法能够生成可靠的基于模糊规则的入侵检测分类器
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Induction of Fuzzy Classification Systems Using Evolutionary ACO-Based Algorithms
In this paper we have proposed an evolutionary algorithm to induct fuzzy classification rules. The algorithm uses an ant colony optimization based local searcher to improve the quality of final fuzzy classification system. The proposed algorithm is performed on intrusion detection as a high-dimensional classification problem. Results show that the implemented evolutionary ACO-Based algorithm is capable of producing a reliable fuzzy rule based classifier for intrusion detection
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Practical Protocol Steganography: Hiding Data in IP Header Energy Efficient Expanding Ring Search On Verification of Communicating Finite State Machines Using Residual Languages High-Speed Real-Time Simulation Modified Line Search Method for Global Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1