基于记忆k-中值计算的大规模数据聚类

Yomi Karthik Rupesh, M. N. Bojnordi
{"title":"基于记忆k-中值计算的大规模数据聚类","authors":"Yomi Karthik Rupesh, M. N. Bojnordi","doi":"10.1109/PACT.2017.52","DOIUrl":null,"url":null,"abstract":"Clustering is a crucial tool for analyzing data in virtually every scientific and engineering discipline. The U.S. National Academy of Sciences (NAS) has recently announced \"the seven giants of statistical data analysis\" in which data clustering plays a central role [1]. This research also emphasizes that more scalable solutions are required to enable time and space clustering for the future large-scale data analyses. Therefore, hardware and software innovations are necessary to make the future large scale data analysis practical.This project proposes a novel mechanism for computing bit serial medians within resistive RAM (RRAM) arrays with no need to read out the operands from memory cells.","PeriodicalId":438103,"journal":{"name":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Large Scale Data Clustering Using Memristive k-Median Computation\",\"authors\":\"Yomi Karthik Rupesh, M. N. Bojnordi\",\"doi\":\"10.1109/PACT.2017.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is a crucial tool for analyzing data in virtually every scientific and engineering discipline. The U.S. National Academy of Sciences (NAS) has recently announced \\\"the seven giants of statistical data analysis\\\" in which data clustering plays a central role [1]. This research also emphasizes that more scalable solutions are required to enable time and space clustering for the future large-scale data analyses. Therefore, hardware and software innovations are necessary to make the future large scale data analysis practical.This project proposes a novel mechanism for computing bit serial medians within resistive RAM (RRAM) arrays with no need to read out the operands from memory cells.\",\"PeriodicalId\":438103,\"journal\":{\"name\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"128 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PACT.2017.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 26th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2017.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

聚类在几乎所有科学和工程学科中都是分析数据的关键工具。美国国家科学院(NAS)最近公布了“统计数据分析的七大巨头”,其中数据聚类在其中起着核心作用。该研究还强调,需要更多可扩展的解决方案来实现未来大规模数据分析的时间和空间集群。因此,硬件和软件的创新是必要的,以使未来的大规模数据分析切实可行。本计画提出一种在电阻式随机存取存储器(RRAM)阵列中计算位序列中位数的新机制,而无需从储存单元中读出操作数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large Scale Data Clustering Using Memristive k-Median Computation
Clustering is a crucial tool for analyzing data in virtually every scientific and engineering discipline. The U.S. National Academy of Sciences (NAS) has recently announced "the seven giants of statistical data analysis" in which data clustering plays a central role [1]. This research also emphasizes that more scalable solutions are required to enable time and space clustering for the future large-scale data analyses. Therefore, hardware and software innovations are necessary to make the future large scale data analysis practical.This project proposes a novel mechanism for computing bit serial medians within resistive RAM (RRAM) arrays with no need to read out the operands from memory cells.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
POSTER: Exploiting Approximations for Energy/Quality Tradeoffs in Service-Based Applications End-to-End Deep Learning of Optimization Heuristics Large Scale Data Clustering Using Memristive k-Median Computation DrMP: Mixed Precision-Aware DRAM for High Performance Approximate and Precise Computing POSTER: Improving Datacenter Efficiency Through Partitioning-Aware Scheduling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1