通过逻辑关联减轻基于缓存争用的攻击

Xiao Liu, Mark Zwolinski
{"title":"通过逻辑关联减轻基于缓存争用的攻击","authors":"Xiao Liu, Mark Zwolinski","doi":"10.1109/prime55000.2022.9816809","DOIUrl":null,"url":null,"abstract":"Many cache designs have been proposed to guard against last-level cache, contention-based, side-channel attacks. One of the most well-known implementations, CEASER-S, applies an encryption cypher with a periodically changing key as a cache indexing function. By increasing the re-keying frequency, CEASER-S can defeat an attack. However, this can lead to performance degradation. In this paper, we propose cache logical associativity. By combining this approach with CEASER-S, our cache, CEASER-SH, sacrifices less performance while maintaining the same security level against more advanced contention-based side-channel attacks. For example, compared with CEASER-S, CEASER-SH with a logical associativity of 3 can reduce the miss rate degradation by about 30% and that of the CPI by 1% while maintaining the same security level against a strong Prime+Probe attack.","PeriodicalId":142196,"journal":{"name":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Cache Contention-Based Attacks by Logical Associativity\",\"authors\":\"Xiao Liu, Mark Zwolinski\",\"doi\":\"10.1109/prime55000.2022.9816809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many cache designs have been proposed to guard against last-level cache, contention-based, side-channel attacks. One of the most well-known implementations, CEASER-S, applies an encryption cypher with a periodically changing key as a cache indexing function. By increasing the re-keying frequency, CEASER-S can defeat an attack. However, this can lead to performance degradation. In this paper, we propose cache logical associativity. By combining this approach with CEASER-S, our cache, CEASER-SH, sacrifices less performance while maintaining the same security level against more advanced contention-based side-channel attacks. For example, compared with CEASER-S, CEASER-SH with a logical associativity of 3 can reduce the miss rate degradation by about 30% and that of the CPI by 1% while maintaining the same security level against a strong Prime+Probe attack.\",\"PeriodicalId\":142196,\"journal\":{\"name\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/prime55000.2022.9816809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 17th Conference on Ph.D Research in Microelectronics and Electronics (PRIME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/prime55000.2022.9816809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

已经提出了许多缓存设计来防止最后一级缓存、基于争用的侧信道攻击。最著名的实现之一是CEASER-S,它应用具有周期性更改密钥的加密密码作为缓存索引功能。通过增加重键频率,CEASER-S可以挫败攻击。然而,这可能会导致性能下降。在本文中,我们提出了缓存逻辑关联。通过将这种方法与CEASER-S相结合,我们的缓存,CEASER-SH,牺牲更少的性能,同时保持相同的安全级别,以对抗更高级的基于争用的侧信道攻击。例如,与CEASER-S相比,逻辑关联度为3的CEASER-SH可以在抵御强Prime+Probe攻击的同时保持相同的安全级别,从而将缺失率降低约30%,将CPI降低1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mitigating Cache Contention-Based Attacks by Logical Associativity
Many cache designs have been proposed to guard against last-level cache, contention-based, side-channel attacks. One of the most well-known implementations, CEASER-S, applies an encryption cypher with a periodically changing key as a cache indexing function. By increasing the re-keying frequency, CEASER-S can defeat an attack. However, this can lead to performance degradation. In this paper, we propose cache logical associativity. By combining this approach with CEASER-S, our cache, CEASER-SH, sacrifices less performance while maintaining the same security level against more advanced contention-based side-channel attacks. For example, compared with CEASER-S, CEASER-SH with a logical associativity of 3 can reduce the miss rate degradation by about 30% and that of the CPI by 1% while maintaining the same security level against a strong Prime+Probe attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Formal Methods to Evaluate Hardware Reliability in the Presence of Soft Errors Leaky Integrate-and-Fire Neuron with a Refractory Period Mechanism for Invariant Spikes Phase-change memory cells characterization in an analog in-memory computing perspective Analysis of Current-Reuse and Split-Voltage Topology for Biomedical Amplifier Arrays Influence of Amplitude and Phase Imbalance on a Y-band Bootstrapped Frequency Doubler using 130-nm SiGe Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1