基于马尔科夫图方法的查询重构模型

Jiali Zuo, Mingwen Wang
{"title":"基于马尔科夫图方法的查询重构模型","authors":"Jiali Zuo, Mingwen Wang","doi":"10.1109/IALP.2011.62","DOIUrl":null,"url":null,"abstract":"Information retrieval model is still can not achieve satisfactory performance after decades of development. One of the reasons is the queries can not express information need precisely. Researches have shown that query reformulation can improve the performance of retrieval model. In this paper, we propose a query reformulation model, which use Markov network to represent term relationship to obtain useful information from corpus to reformulate query. Experimental results show that our model can avoid topic drift and then improve the retrieval performance.","PeriodicalId":297167,"journal":{"name":"2011 International Conference on Asian Language Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Query Reformulation Model Using Markov Graphic Method\",\"authors\":\"Jiali Zuo, Mingwen Wang\",\"doi\":\"10.1109/IALP.2011.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Information retrieval model is still can not achieve satisfactory performance after decades of development. One of the reasons is the queries can not express information need precisely. Researches have shown that query reformulation can improve the performance of retrieval model. In this paper, we propose a query reformulation model, which use Markov network to represent term relationship to obtain useful information from corpus to reformulate query. Experimental results show that our model can avoid topic drift and then improve the retrieval performance.\",\"PeriodicalId\":297167,\"journal\":{\"name\":\"2011 International Conference on Asian Language Processing\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Conference on Asian Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IALP.2011.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2011.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

信息检索模型经过几十年的发展,仍然不能达到令人满意的性能。其中一个原因是查询不能准确表达信息需求。研究表明,查询重构可以提高检索模型的性能。本文提出了一种查询重表述模型,利用马尔可夫网络表示术语关系,从语料库中获取有用信息进行查询重表述。实验结果表明,该模型可以避免主题漂移,从而提高检索性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Query Reformulation Model Using Markov Graphic Method
Information retrieval model is still can not achieve satisfactory performance after decades of development. One of the reasons is the queries can not express information need precisely. Researches have shown that query reformulation can improve the performance of retrieval model. In this paper, we propose a query reformulation model, which use Markov network to represent term relationship to obtain useful information from corpus to reformulate query. Experimental results show that our model can avoid topic drift and then improve the retrieval performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Automatic Linguistics Approach for Persian Document Summarization Research on the Uyghur Information Database for Information Processing Research on Multi-document Summarization Model Based on Dynamic Manifold-Ranking Mining Parallel Data from Comparable Corpora via Triangulation A Query Reformulation Model Using Markov Graphic Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1