分布式处理和云计算在农业决策支持系统中的应用

Walter Akio Goya, Marcelo Risse de Andrade, Artur Carvalho Zucchi, N. Gonzalez, Rosangela de Fatima Pereira, K. Langona, T. Carvalho, Jan-Erik Mångs, A. Sefidcon
{"title":"分布式处理和云计算在农业决策支持系统中的应用","authors":"Walter Akio Goya, Marcelo Risse de Andrade, Artur Carvalho Zucchi, N. Gonzalez, Rosangela de Fatima Pereira, K. Langona, T. Carvalho, Jan-Erik Mångs, A. Sefidcon","doi":"10.1109/CLOUD.2014.101","DOIUrl":null,"url":null,"abstract":"One of the main challenges in agriculture is to sustainably meet the demand for food while preserving natural resources for future productions. Information Technology can assist producers to make better decisions by providing them with data and tools that enhance decision-making process, consequently allowing better management of the natural resources. Cloud-computing platforms and the extraction of data available on public weather related data sets allow the development of web applications that can assist producers with their investing and planning decisions. This paper describes the Big Weather solution, an agricultural decision-making support system that utilizes a cloud-computing platform, distributed processing technologies, and a big data framework. This paper also presents Big Weather architecture and an example of metric calculations (average temperature and humidity) and discusses the performance of the solution when tested in different virtual machine scenario configurations. The novelty is the transparency of the framework, which allows farmers to make better decisions based on data available on the cloud.","PeriodicalId":288542,"journal":{"name":"2014 IEEE 7th International Conference on Cloud Computing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"The Use of Distributed Processing and Cloud Computing in Agricultural Decision-Making Support Systems\",\"authors\":\"Walter Akio Goya, Marcelo Risse de Andrade, Artur Carvalho Zucchi, N. Gonzalez, Rosangela de Fatima Pereira, K. Langona, T. Carvalho, Jan-Erik Mångs, A. Sefidcon\",\"doi\":\"10.1109/CLOUD.2014.101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One of the main challenges in agriculture is to sustainably meet the demand for food while preserving natural resources for future productions. Information Technology can assist producers to make better decisions by providing them with data and tools that enhance decision-making process, consequently allowing better management of the natural resources. Cloud-computing platforms and the extraction of data available on public weather related data sets allow the development of web applications that can assist producers with their investing and planning decisions. This paper describes the Big Weather solution, an agricultural decision-making support system that utilizes a cloud-computing platform, distributed processing technologies, and a big data framework. This paper also presents Big Weather architecture and an example of metric calculations (average temperature and humidity) and discusses the performance of the solution when tested in different virtual machine scenario configurations. The novelty is the transparency of the framework, which allows farmers to make better decisions based on data available on the cloud.\",\"PeriodicalId\":288542,\"journal\":{\"name\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE 7th International Conference on Cloud Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CLOUD.2014.101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 7th International Conference on Cloud Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUD.2014.101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

农业面临的主要挑战之一是可持续地满足对粮食的需求,同时为未来的生产保护自然资源。信息技术可以帮助生产者做出更好的决策,为他们提供数据和工具,加强决策过程,从而更好地管理自然资源。云计算平台和公共天气相关数据集的数据提取使得web应用程序的开发可以帮助生产商进行投资和规划决策。本文介绍了利用云计算平台、分布式处理技术和大数据框架的农业决策支持系统“大天气解决方案”。本文还介绍了Big Weather架构和度量计算(平均温度和湿度)的一个示例,并讨论了在不同虚拟机场景配置中测试该解决方案时的性能。该框架的新颖之处在于其透明度,它允许农民根据云上可用的数据做出更好的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Use of Distributed Processing and Cloud Computing in Agricultural Decision-Making Support Systems
One of the main challenges in agriculture is to sustainably meet the demand for food while preserving natural resources for future productions. Information Technology can assist producers to make better decisions by providing them with data and tools that enhance decision-making process, consequently allowing better management of the natural resources. Cloud-computing platforms and the extraction of data available on public weather related data sets allow the development of web applications that can assist producers with their investing and planning decisions. This paper describes the Big Weather solution, an agricultural decision-making support system that utilizes a cloud-computing platform, distributed processing technologies, and a big data framework. This paper also presents Big Weather architecture and an example of metric calculations (average temperature and humidity) and discusses the performance of the solution when tested in different virtual machine scenario configurations. The novelty is the transparency of the framework, which allows farmers to make better decisions based on data available on the cloud.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
User-Friendly Visualization of Cloud Quality Energy and Performance-Aware Task Scheduling in a Mobile Cloud Computing Environment MediaPaaS: A Cloud-Based Media Processing Platform for Elastic Live Broadcasting AppCloak: Rapid Migration of Legacy Applications into Cloud Introducing SSDs to the Hadoop MapReduce Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1