用分支定界法和局部搜索法求解多目标机器调度问题

Doha Adel Abbass
{"title":"用分支定界法和局部搜索法求解多目标机器调度问题","authors":"Doha Adel Abbass","doi":"10.1109/CAS47993.2019.9075460","DOIUrl":null,"url":null,"abstract":"In this research, we suggested the problem scheduling of n jobs on a single machine to decrease schedule multi-objective function; the sum cost of total completion time, the total number of late jobs, total tardiness and the maximum tardiness $(\\Sigma C_{i}+ \\Sigma U_{i}+\\Sigma T_{i}+T_{max})$, which is NP-hard problem. In this research, we proposed the branch and bound algorithm (BAB) to obtain the optimal solution. We used some local search methods (descent method (DM) and genetic algorithm (GA)) to obtain an optimal solution or a near-optimal solution. Also, we developed a simple algorithm (SPT-MA) to find a solution near the optimum solution. The (SPT-MA) algorithm proofs its good performance in solving the problem in a reasonable time.","PeriodicalId":202291,"journal":{"name":"2019 First International Conference of Computer and Applied Sciences (CAS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using Branch and Bound and Local Search Methods to Solve Multi-objective Machine Scheduling Problem\",\"authors\":\"Doha Adel Abbass\",\"doi\":\"10.1109/CAS47993.2019.9075460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, we suggested the problem scheduling of n jobs on a single machine to decrease schedule multi-objective function; the sum cost of total completion time, the total number of late jobs, total tardiness and the maximum tardiness $(\\\\Sigma C_{i}+ \\\\Sigma U_{i}+\\\\Sigma T_{i}+T_{max})$, which is NP-hard problem. In this research, we proposed the branch and bound algorithm (BAB) to obtain the optimal solution. We used some local search methods (descent method (DM) and genetic algorithm (GA)) to obtain an optimal solution or a near-optimal solution. Also, we developed a simple algorithm (SPT-MA) to find a solution near the optimum solution. The (SPT-MA) algorithm proofs its good performance in solving the problem in a reasonable time.\",\"PeriodicalId\":202291,\"journal\":{\"name\":\"2019 First International Conference of Computer and Applied Sciences (CAS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 First International Conference of Computer and Applied Sciences (CAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAS47993.2019.9075460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 First International Conference of Computer and Applied Sciences (CAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAS47993.2019.9075460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在本研究中,我们提出了n个作业在一台机器上调度的问题,以减少调度的多目标函数;总完工时间、总迟到作业数、总迟到时间和最大迟到时间的总成本$(\Sigma C_{i}+ \Sigma U_{i}+\Sigma T_{i}+T_{max})$,这是np困难问题。在本研究中,我们提出了分支定界算法(BAB)来获得最优解。我们使用了一些局部搜索方法(下降法(DM)和遗传算法(GA))来获得最优解或近最优解。此外,我们开发了一个简单的算法(SPT-MA)来寻找接近最优解的解。(SPT-MA)算法在合理的时间内求解问题,具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Branch and Bound and Local Search Methods to Solve Multi-objective Machine Scheduling Problem
In this research, we suggested the problem scheduling of n jobs on a single machine to decrease schedule multi-objective function; the sum cost of total completion time, the total number of late jobs, total tardiness and the maximum tardiness $(\Sigma C_{i}+ \Sigma U_{i}+\Sigma T_{i}+T_{max})$, which is NP-hard problem. In this research, we proposed the branch and bound algorithm (BAB) to obtain the optimal solution. We used some local search methods (descent method (DM) and genetic algorithm (GA)) to obtain an optimal solution or a near-optimal solution. Also, we developed a simple algorithm (SPT-MA) to find a solution near the optimum solution. The (SPT-MA) algorithm proofs its good performance in solving the problem in a reasonable time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melanoma Skin Cancer Detection Based on ABCD Rule Three Prior and Double Prior Selection to Comparison Estimate Parameter Rayleigh Distribution under Data Type II Censoring Speaker identification using convolutional neural network for clean and noisy speech samples Surface Patch Detection of 3D Point Cloud Using Local Shape Descriptor The trade-off between security and quality using permutation and substitution techniques in speech scrambling system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1