基于强化学习系统和cmac的电动轮椅自动行走系统的开发

R. Kurozumi, S. Fujisawa, T. Yamamoto, Y. Suita
{"title":"基于强化学习系统和cmac的电动轮椅自动行走系统的开发","authors":"R. Kurozumi, S. Fujisawa, T. Yamamoto, Y. Suita","doi":"10.1109/IJCNN.2002.1007772","DOIUrl":null,"url":null,"abstract":"The existing method for establishing travel routes provides modeled environmental information, but it is difficult to create an environment model for the environments where electric wheelchairs travel because the environment changes constantly due to the existence of moving objects including pedestrians. In this study, we propose an automatic travelling system for an electric wheelchair using reinforcement learning systems and CMACs. We select the best travel route by utilizing these reinforcement learning systems. When a CMAC learns the value function of Q-learning, an improved learning speed is achieved by utilizing the generalizing action. CMACs enable one to reduce the time needed to select the best travel route. Using simulation, a path planning experiment was performed.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of an automatic travel system for electric wheelchairs using reinforcement learning systems and CMACs\",\"authors\":\"R. Kurozumi, S. Fujisawa, T. Yamamoto, Y. Suita\",\"doi\":\"10.1109/IJCNN.2002.1007772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing method for establishing travel routes provides modeled environmental information, but it is difficult to create an environment model for the environments where electric wheelchairs travel because the environment changes constantly due to the existence of moving objects including pedestrians. In this study, we propose an automatic travelling system for an electric wheelchair using reinforcement learning systems and CMACs. We select the best travel route by utilizing these reinforcement learning systems. When a CMAC learns the value function of Q-learning, an improved learning speed is achieved by utilizing the generalizing action. CMACs enable one to reduce the time needed to select the best travel route. Using simulation, a path planning experiment was performed.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现有的建立出行路线的方法提供了模型化的环境信息,但由于包括行人在内的移动物体的存在,环境会不断变化,因此很难建立电动轮椅行驶环境的环境模型。在这项研究中,我们提出了一个使用强化学习系统和cmac的电动轮椅自动行驶系统。我们通过使用这些强化学习系统来选择最佳的旅行路线。当CMAC学习Q-learning的值函数时,利用泛化作用提高了学习速度。cmac使人们能够减少选择最佳旅行路线所需的时间。通过仿真,进行了路径规划实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of an automatic travel system for electric wheelchairs using reinforcement learning systems and CMACs
The existing method for establishing travel routes provides modeled environmental information, but it is difficult to create an environment model for the environments where electric wheelchairs travel because the environment changes constantly due to the existence of moving objects including pedestrians. In this study, we propose an automatic travelling system for an electric wheelchair using reinforcement learning systems and CMACs. We select the best travel route by utilizing these reinforcement learning systems. When a CMAC learns the value function of Q-learning, an improved learning speed is achieved by utilizing the generalizing action. CMACs enable one to reduce the time needed to select the best travel route. Using simulation, a path planning experiment was performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1