{"title":"展示具有优异机械和激光功率耐久性的大孔径可定制元表面","authors":"E. Feigenbaum, N. Ray, J. Yoo, Hoang T. Nguyen","doi":"10.1117/12.2593736","DOIUrl":null,"url":null,"abstract":"We present an alternative approach to dielectric meta-surfaces and demonstrate its scalability, mechanical durability and laser damage resilience. The process is based on laser raster-scan of a thin metal film on a glass, followed by dry-etching and removal of the metal nano-particles mask. We will present new approaches developed to “boost” the attainable optical response based on new underlying physics of the laser printed Au nanoparticle mask.","PeriodicalId":389503,"journal":{"name":"Metamaterials, Metadevices, and Metasystems 2021","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Demonstration of large aperture tailorable meta-surfaces with superior mechanical and laser power durability\",\"authors\":\"E. Feigenbaum, N. Ray, J. Yoo, Hoang T. Nguyen\",\"doi\":\"10.1117/12.2593736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an alternative approach to dielectric meta-surfaces and demonstrate its scalability, mechanical durability and laser damage resilience. The process is based on laser raster-scan of a thin metal film on a glass, followed by dry-etching and removal of the metal nano-particles mask. We will present new approaches developed to “boost” the attainable optical response based on new underlying physics of the laser printed Au nanoparticle mask.\",\"PeriodicalId\":389503,\"journal\":{\"name\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metamaterials, Metadevices, and Metasystems 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2593736\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metamaterials, Metadevices, and Metasystems 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2593736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Demonstration of large aperture tailorable meta-surfaces with superior mechanical and laser power durability
We present an alternative approach to dielectric meta-surfaces and demonstrate its scalability, mechanical durability and laser damage resilience. The process is based on laser raster-scan of a thin metal film on a glass, followed by dry-etching and removal of the metal nano-particles mask. We will present new approaches developed to “boost” the attainable optical response based on new underlying physics of the laser printed Au nanoparticle mask.