仿真即服务(EaaS):用于网络分析基准测试的即插即用框架

G. Mishra, H. Rath, S. Nadaf
{"title":"仿真即服务(EaaS):用于网络分析基准测试的即插即用框架","authors":"G. Mishra, H. Rath, S. Nadaf","doi":"10.1109/NCC55593.2022.9806721","DOIUrl":null,"url":null,"abstract":"Real-time data generation and collection to analyse the network performance is difficult for large-scale networks having limited accessibility. In this paper we propose a framework which can provide realistic si/e-mulations, and generate synthetic data closer to real-time data that replaces the traditionally used deterministic and probabilistic models. This framework uses an emulation based platform to replicate real network scenarios. The emulator acts as a base layer with necessary APIs to enable customized inclusion of analytics services in a plug-and-play manner through the framework. This framework can be used to acquire data required for different Machine Learning (ML) models in order to reduce costly and time-consuming data collection effort in network analytics.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Emulation as a Service (EaaS): A Plug-n-Play Framework for Benchmarking Network Analytics\",\"authors\":\"G. Mishra, H. Rath, S. Nadaf\",\"doi\":\"10.1109/NCC55593.2022.9806721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time data generation and collection to analyse the network performance is difficult for large-scale networks having limited accessibility. In this paper we propose a framework which can provide realistic si/e-mulations, and generate synthetic data closer to real-time data that replaces the traditionally used deterministic and probabilistic models. This framework uses an emulation based platform to replicate real network scenarios. The emulator acts as a base layer with necessary APIs to enable customized inclusion of analytics services in a plug-and-play manner through the framework. This framework can be used to acquire data required for different Machine Learning (ML) models in order to reduce costly and time-consuming data collection effort in network analytics.\",\"PeriodicalId\":403870,\"journal\":{\"name\":\"2022 National Conference on Communications (NCC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC55593.2022.9806721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在可访问性有限的大型网络中,实时生成和收集数据来分析网络性能是困难的。在本文中,我们提出了一个框架,它可以提供真实的si/e模拟,并生成更接近实时数据的合成数据,取代传统上使用的确定性和概率模型。该框架使用基于仿真的平台来复制真实的网络场景。模拟器充当具有必要api的基础层,以便通过框架以即插即用的方式自定义包含分析服务。该框架可用于获取不同机器学习(ML)模型所需的数据,以减少网络分析中昂贵且耗时的数据收集工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emulation as a Service (EaaS): A Plug-n-Play Framework for Benchmarking Network Analytics
Real-time data generation and collection to analyse the network performance is difficult for large-scale networks having limited accessibility. In this paper we propose a framework which can provide realistic si/e-mulations, and generate synthetic data closer to real-time data that replaces the traditionally used deterministic and probabilistic models. This framework uses an emulation based platform to replicate real network scenarios. The emulator acts as a base layer with necessary APIs to enable customized inclusion of analytics services in a plug-and-play manner through the framework. This framework can be used to acquire data required for different Machine Learning (ML) models in order to reduce costly and time-consuming data collection effort in network analytics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CoRAL: Coordinated Resource Allocation for Intercell D2D Communication in Cellular Networks Modelling the Impact of Multiple Pro-inflammatory Cytokines Using Molecular Communication STPGANsFusion: Structure and Texture Preserving Generative Adversarial Networks for Multi-modal Medical Image Fusion Intelligent On/Off Switching of mmRSUs in Urban Vehicular Networks: A Deep Q-Learning Approach Classification of Auscultation Sounds into Objective Spirometry Findings using MVMD and 3D CNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1