基于HOG特征和人工神经网络的离线签名识别

M. Taskiran, Zehra Gulru Cam
{"title":"基于HOG特征和人工神经网络的离线签名识别","authors":"M. Taskiran, Zehra Gulru Cam","doi":"10.1109/SAMI.2017.7880280","DOIUrl":null,"url":null,"abstract":"In this work, an offline signature identification system based on Histogram of Oriented Gradients (HOG) vector features is designed. Handwritten signature images are collected at Yildiz Technical University, from 15 people, 40 samples from each. Before the HOG feature extraction, size fixing and noise reduction processes are applied to all signature images. HOG features are extracted from the noiseless same sized images. In order to prevent the waste of processing time and to eliminate the redundant features, PCA is applied to the dataset. Obtained dataset is used to train the GRNN. As a result, a 98.33 percent test accuracy is obtained by using the proposed method along with two-folded cross correlation.","PeriodicalId":105599,"journal":{"name":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Offline signature identification via HOG features and artificial neural networks\",\"authors\":\"M. Taskiran, Zehra Gulru Cam\",\"doi\":\"10.1109/SAMI.2017.7880280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an offline signature identification system based on Histogram of Oriented Gradients (HOG) vector features is designed. Handwritten signature images are collected at Yildiz Technical University, from 15 people, 40 samples from each. Before the HOG feature extraction, size fixing and noise reduction processes are applied to all signature images. HOG features are extracted from the noiseless same sized images. In order to prevent the waste of processing time and to eliminate the redundant features, PCA is applied to the dataset. Obtained dataset is used to train the GRNN. As a result, a 98.33 percent test accuracy is obtained by using the proposed method along with two-folded cross correlation.\",\"PeriodicalId\":105599,\"journal\":{\"name\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAMI.2017.7880280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAMI.2017.7880280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文设计了一种基于定向梯度直方图(Histogram of Oriented Gradients, HOG)矢量特征的离线签名识别系统。耶尔德兹技术大学收集了15个人的手写签名图像,每人40个样本。在HOG特征提取之前,对所有签名图像进行尺寸固定和降噪处理。HOG特征提取自相同大小的无噪声图像。为了防止处理时间的浪费和消除冗余特征,将PCA应用于数据集。获取的数据集用于训练GRNN。结果表明,该方法结合两折互相关,测试精度可达98.33%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Offline signature identification via HOG features and artificial neural networks
In this work, an offline signature identification system based on Histogram of Oriented Gradients (HOG) vector features is designed. Handwritten signature images are collected at Yildiz Technical University, from 15 people, 40 samples from each. Before the HOG feature extraction, size fixing and noise reduction processes are applied to all signature images. HOG features are extracted from the noiseless same sized images. In order to prevent the waste of processing time and to eliminate the redundant features, PCA is applied to the dataset. Obtained dataset is used to train the GRNN. As a result, a 98.33 percent test accuracy is obtained by using the proposed method along with two-folded cross correlation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-organising symbolic aggregate approximation for real-time fault detection and diagnosis in transient dynamic systems Robot navigation in unknown environment using fuzzy logic Artificial neural network based IDS Video-based measurement system of parameters of the pyrotechnic effect Building environment analysis based on clustering methods from sensor data on top of the Hadoop platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1