基于模糊决策树的医疗数据表征方法

C. Marsala
{"title":"基于模糊决策树的医疗数据表征方法","authors":"C. Marsala","doi":"10.1109/FUZZY.2009.5277106","DOIUrl":null,"url":null,"abstract":"In this paper, two medical experiments are presented where the use of a fuzzy machine learning tool brought out a better understanding of the patients involved in the study. The use of fuzzy set theory to provide fuzzy labels and the construction of fuzzy decision trees to generate fuzzy rule bases enhance greatly the understandability and enable the Medical scientists to have a better understanding of the correlations between the description of the patients and their medical class. The results obtained in these two experiments highlight the usefulness of fuzzy data mining approach to handle real world data and to benefit Society.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A fuzzy decision tree based approach to characterize medical data\",\"authors\":\"C. Marsala\",\"doi\":\"10.1109/FUZZY.2009.5277106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, two medical experiments are presented where the use of a fuzzy machine learning tool brought out a better understanding of the patients involved in the study. The use of fuzzy set theory to provide fuzzy labels and the construction of fuzzy decision trees to generate fuzzy rule bases enhance greatly the understandability and enable the Medical scientists to have a better understanding of the correlations between the description of the patients and their medical class. The results obtained in these two experiments highlight the usefulness of fuzzy data mining approach to handle real world data and to benefit Society.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

在本文中,介绍了两个医学实验,其中使用模糊机器学习工具可以更好地了解参与研究的患者。利用模糊集理论提供模糊标签,构建模糊决策树生成模糊规则库,大大提高了可理解性,使医学家能够更好地理解患者描述与其医疗类别之间的相关性。这两个实验的结果突出了模糊数据挖掘方法在处理真实世界数据和造福社会方面的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A fuzzy decision tree based approach to characterize medical data
In this paper, two medical experiments are presented where the use of a fuzzy machine learning tool brought out a better understanding of the patients involved in the study. The use of fuzzy set theory to provide fuzzy labels and the construction of fuzzy decision trees to generate fuzzy rule bases enhance greatly the understandability and enable the Medical scientists to have a better understanding of the correlations between the description of the patients and their medical class. The results obtained in these two experiments highlight the usefulness of fuzzy data mining approach to handle real world data and to benefit Society.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1