{"title":"改进的k均值聚类方法诊断痤疮类型","authors":"C. Hayat","doi":"10.1109/ICITech50181.2021.9590124","DOIUrl":null,"url":null,"abstract":"Acne is a skin disorder all humans almost have, both women and men. How to treat acne properly determines how quick you will be acne-free. Still, the dependency on doctors in conducting skin physical examinations to make an early diagnosis remains high. Therefore, this research was conducted by developing K-Means Clustering model for early diagnosis of types of acne experienced by the patients. The K-Means clustering algorithm were as follows: (a) determining the total clusters; (b) allocating the data into groups, randomly; (c) calculating the centroid in each cluster; (d) allocating each data to the centroid (e) repeating the centroid calculation if there were still data moving fro one cluster to another. The results of the performance of the K-means model would produce types of acne with four output categories according to the severity of acne such as: no acne (16.12%), mild acne (29.03%), moderate acne (32.25%), and severe acne (22.60%).","PeriodicalId":429669,"journal":{"name":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Enhanced K-Means Clustering Approach for Diagnosis Types of Acne\",\"authors\":\"C. Hayat\",\"doi\":\"10.1109/ICITech50181.2021.9590124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acne is a skin disorder all humans almost have, both women and men. How to treat acne properly determines how quick you will be acne-free. Still, the dependency on doctors in conducting skin physical examinations to make an early diagnosis remains high. Therefore, this research was conducted by developing K-Means Clustering model for early diagnosis of types of acne experienced by the patients. The K-Means clustering algorithm were as follows: (a) determining the total clusters; (b) allocating the data into groups, randomly; (c) calculating the centroid in each cluster; (d) allocating each data to the centroid (e) repeating the centroid calculation if there were still data moving fro one cluster to another. The results of the performance of the K-means model would produce types of acne with four output categories according to the severity of acne such as: no acne (16.12%), mild acne (29.03%), moderate acne (32.25%), and severe acne (22.60%).\",\"PeriodicalId\":429669,\"journal\":{\"name\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITech50181.2021.9590124\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITech50181.2021.9590124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced K-Means Clustering Approach for Diagnosis Types of Acne
Acne is a skin disorder all humans almost have, both women and men. How to treat acne properly determines how quick you will be acne-free. Still, the dependency on doctors in conducting skin physical examinations to make an early diagnosis remains high. Therefore, this research was conducted by developing K-Means Clustering model for early diagnosis of types of acne experienced by the patients. The K-Means clustering algorithm were as follows: (a) determining the total clusters; (b) allocating the data into groups, randomly; (c) calculating the centroid in each cluster; (d) allocating each data to the centroid (e) repeating the centroid calculation if there were still data moving fro one cluster to another. The results of the performance of the K-means model would produce types of acne with four output categories according to the severity of acne such as: no acne (16.12%), mild acne (29.03%), moderate acne (32.25%), and severe acne (22.60%).