{"title":"基于ABC、AIA和PSO技术的滚动轴承多目标优化设计","authors":"V. Savsani","doi":"10.4018/ijeoe.2013070107","DOIUrl":null,"url":null,"abstract":"Rolling element bearings are widely used as important components in most of the mechanical engineering applications. These bearings find wide applications in automotive, manufacturing and aeronautical industries. The problem associated with rolling element bearings are that the design and selection are based on different operating conditions to reach their excellent performance, long life and high reliability. This leads to the requirement of optimal design of rolling element bearings. Optimization aspects of a rolling element bearing are presented in this paper considering three different objectives namely, dynamic capacity, static capacity and elastohydrodynamic minimum film thickness. The design parameters include mean diameter of rolling, ball diameter, number of balls, and inner and outer race groove curvature radii. Different constants associated with the constraints are given some ranges and are included as design variables. The optimization procedure is carried out using artificial bee colony (ABC) optimization technique, artificial immune algorithm (AIA), and particle swarm optimization (PSO) technique. Both single and multi-objective optimization aspects are considered. The results of the considered techniques are compared with the previously published results. The considered techniques have given much better results in comparison to the previously tried approaches.","PeriodicalId":246250,"journal":{"name":"Int. J. Energy Optim. Eng.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi-Objective Design Optimization of Rolling Element Bearings Using ABC, AIA and PSO Technique\",\"authors\":\"V. Savsani\",\"doi\":\"10.4018/ijeoe.2013070107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Rolling element bearings are widely used as important components in most of the mechanical engineering applications. These bearings find wide applications in automotive, manufacturing and aeronautical industries. The problem associated with rolling element bearings are that the design and selection are based on different operating conditions to reach their excellent performance, long life and high reliability. This leads to the requirement of optimal design of rolling element bearings. Optimization aspects of a rolling element bearing are presented in this paper considering three different objectives namely, dynamic capacity, static capacity and elastohydrodynamic minimum film thickness. The design parameters include mean diameter of rolling, ball diameter, number of balls, and inner and outer race groove curvature radii. Different constants associated with the constraints are given some ranges and are included as design variables. The optimization procedure is carried out using artificial bee colony (ABC) optimization technique, artificial immune algorithm (AIA), and particle swarm optimization (PSO) technique. Both single and multi-objective optimization aspects are considered. The results of the considered techniques are compared with the previously published results. The considered techniques have given much better results in comparison to the previously tried approaches.\",\"PeriodicalId\":246250,\"journal\":{\"name\":\"Int. J. Energy Optim. Eng.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Energy Optim. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/ijeoe.2013070107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Energy Optim. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijeoe.2013070107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Objective Design Optimization of Rolling Element Bearings Using ABC, AIA and PSO Technique
Rolling element bearings are widely used as important components in most of the mechanical engineering applications. These bearings find wide applications in automotive, manufacturing and aeronautical industries. The problem associated with rolling element bearings are that the design and selection are based on different operating conditions to reach their excellent performance, long life and high reliability. This leads to the requirement of optimal design of rolling element bearings. Optimization aspects of a rolling element bearing are presented in this paper considering three different objectives namely, dynamic capacity, static capacity and elastohydrodynamic minimum film thickness. The design parameters include mean diameter of rolling, ball diameter, number of balls, and inner and outer race groove curvature radii. Different constants associated with the constraints are given some ranges and are included as design variables. The optimization procedure is carried out using artificial bee colony (ABC) optimization technique, artificial immune algorithm (AIA), and particle swarm optimization (PSO) technique. Both single and multi-objective optimization aspects are considered. The results of the considered techniques are compared with the previously published results. The considered techniques have given much better results in comparison to the previously tried approaches.