Mohammad Hossein Hajkazemi, Mania Abdi, Peter Desnoyers
{"title":"μCache:用于SMR转换层的可变缓存","authors":"Mohammad Hossein Hajkazemi, Mania Abdi, Peter Desnoyers","doi":"10.1109/MASCOTS50786.2020.9285939","DOIUrl":null,"url":null,"abstract":"Shingled Magnetic Recording (SMR) may be combined with conventional (re-writable) recording on the same drive; in host-managed drives shipping today this capability is used to provide a small number of re-writable zones, typically totaling a few tens of GB. Although these re-writable zones are widely used by SMR-aware applications, the literature to date has ignored them and focused on fully-shingled devices. We describe μCache, an SMR translation layer (STL) using re-writable (mutable) zones to take advantage of both workload spatial and temporal locality to reduce the garbage collection overhead resulted from out-of-place writes. In μCache the volume LBA space is divided into fixed -sized buckets and, on write access, the corresponding bucket is copied (promoted) to the re-writable zones, allowing subsequent writes to the same bucket be served in - place resulting in fewer garbage collection cycles. We evaluate μCache in simulation against real-world traces and show that with appropriate parameters it is able to hold the entire write working set of most workloads in re-writable storage, virtually eliminating garbage collection overhead. We also emulate μCache by replaying its translated traces against actual drive and show that 1) it outperforms its examined counterpart, an E-region based translation approach on average by 2x and up to 5.1x, and 2) it incurs additional latency only for a small fraction of write operations, (up to 10%) when compared with conventional non-shingled disks.","PeriodicalId":272614,"journal":{"name":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"μCache: a mutable cache for SMR translation layer\",\"authors\":\"Mohammad Hossein Hajkazemi, Mania Abdi, Peter Desnoyers\",\"doi\":\"10.1109/MASCOTS50786.2020.9285939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Shingled Magnetic Recording (SMR) may be combined with conventional (re-writable) recording on the same drive; in host-managed drives shipping today this capability is used to provide a small number of re-writable zones, typically totaling a few tens of GB. Although these re-writable zones are widely used by SMR-aware applications, the literature to date has ignored them and focused on fully-shingled devices. We describe μCache, an SMR translation layer (STL) using re-writable (mutable) zones to take advantage of both workload spatial and temporal locality to reduce the garbage collection overhead resulted from out-of-place writes. In μCache the volume LBA space is divided into fixed -sized buckets and, on write access, the corresponding bucket is copied (promoted) to the re-writable zones, allowing subsequent writes to the same bucket be served in - place resulting in fewer garbage collection cycles. We evaluate μCache in simulation against real-world traces and show that with appropriate parameters it is able to hold the entire write working set of most workloads in re-writable storage, virtually eliminating garbage collection overhead. We also emulate μCache by replaying its translated traces against actual drive and show that 1) it outperforms its examined counterpart, an E-region based translation approach on average by 2x and up to 5.1x, and 2) it incurs additional latency only for a small fraction of write operations, (up to 10%) when compared with conventional non-shingled disks.\",\"PeriodicalId\":272614,\"journal\":{\"name\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MASCOTS50786.2020.9285939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MASCOTS50786.2020.9285939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Shingled Magnetic Recording (SMR) may be combined with conventional (re-writable) recording on the same drive; in host-managed drives shipping today this capability is used to provide a small number of re-writable zones, typically totaling a few tens of GB. Although these re-writable zones are widely used by SMR-aware applications, the literature to date has ignored them and focused on fully-shingled devices. We describe μCache, an SMR translation layer (STL) using re-writable (mutable) zones to take advantage of both workload spatial and temporal locality to reduce the garbage collection overhead resulted from out-of-place writes. In μCache the volume LBA space is divided into fixed -sized buckets and, on write access, the corresponding bucket is copied (promoted) to the re-writable zones, allowing subsequent writes to the same bucket be served in - place resulting in fewer garbage collection cycles. We evaluate μCache in simulation against real-world traces and show that with appropriate parameters it is able to hold the entire write working set of most workloads in re-writable storage, virtually eliminating garbage collection overhead. We also emulate μCache by replaying its translated traces against actual drive and show that 1) it outperforms its examined counterpart, an E-region based translation approach on average by 2x and up to 5.1x, and 2) it incurs additional latency only for a small fraction of write operations, (up to 10%) when compared with conventional non-shingled disks.