D. G. Guo, F. Tay, Lin Xu, L. Yu, M. N. Nyan, F. W. Chong, K. L. Yap, B. Xu
{"title":"基于bsn的生命体征监测系统新型微加工电极的表征与制备","authors":"D. G. Guo, F. Tay, Lin Xu, L. Yu, M. N. Nyan, F. W. Chong, K. L. Yap, B. Xu","doi":"10.1109/BSN.2009.12","DOIUrl":null,"url":null,"abstract":"A novel micromachined electrode is designed and fabricated for a BSN-based vital signs monitoring system. Both theoretical calculation and ANSYS simulation show that buckling problem will not occur for the proposed microneedles during insertion process. The BSN-based vital signs routine monitoring system, which comprises of wireless mote, analog amplifier circuit board and SpO2 (Saturation of Arterial Oxygen) probe, is able to measure physiological signs in real time and with minimum disturbance on quality of life. The proposed device is easy to wear and convenient to use. Using a dock with ZigBee adapter, a PDA phone can communicate with the mote and then display the ECG/PPG waveforms as well as the important indices of vital signs, such as heart beat rate, SpO2 value and systolic blood pressure.","PeriodicalId":269861,"journal":{"name":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Characterization and Fabrication of Novel Micromachined Electrode for BSN-Based Vital Signs Monitoring System\",\"authors\":\"D. G. Guo, F. Tay, Lin Xu, L. Yu, M. N. Nyan, F. W. Chong, K. L. Yap, B. Xu\",\"doi\":\"10.1109/BSN.2009.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel micromachined electrode is designed and fabricated for a BSN-based vital signs monitoring system. Both theoretical calculation and ANSYS simulation show that buckling problem will not occur for the proposed microneedles during insertion process. The BSN-based vital signs routine monitoring system, which comprises of wireless mote, analog amplifier circuit board and SpO2 (Saturation of Arterial Oxygen) probe, is able to measure physiological signs in real time and with minimum disturbance on quality of life. The proposed device is easy to wear and convenient to use. Using a dock with ZigBee adapter, a PDA phone can communicate with the mote and then display the ECG/PPG waveforms as well as the important indices of vital signs, such as heart beat rate, SpO2 value and systolic blood pressure.\",\"PeriodicalId\":269861,\"journal\":{\"name\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2009.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2009.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Characterization and Fabrication of Novel Micromachined Electrode for BSN-Based Vital Signs Monitoring System
A novel micromachined electrode is designed and fabricated for a BSN-based vital signs monitoring system. Both theoretical calculation and ANSYS simulation show that buckling problem will not occur for the proposed microneedles during insertion process. The BSN-based vital signs routine monitoring system, which comprises of wireless mote, analog amplifier circuit board and SpO2 (Saturation of Arterial Oxygen) probe, is able to measure physiological signs in real time and with minimum disturbance on quality of life. The proposed device is easy to wear and convenient to use. Using a dock with ZigBee adapter, a PDA phone can communicate with the mote and then display the ECG/PPG waveforms as well as the important indices of vital signs, such as heart beat rate, SpO2 value and systolic blood pressure.