MLearn

M. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann, Thomas Neumann
{"title":"MLearn","authors":"M. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann, Thomas Neumann","doi":"10.1145/3329486.3329494","DOIUrl":null,"url":null,"abstract":"This paper outlines the requirements of our ML2SQL compiler that allows a dedicated machine learning language (MLearn) to be run on different target architectures. The language was designed to cover an end-to-end machine learning process, including initial data curation, with the focus on moving computations inside the core of database systems. To move computations to the data, we explain the architecture of a compiler that translates into target specific user-defined-functions for the PostgreSQL and HyPer database systems. For computations inside user-defined-functions, we explain the necessary tensor datatypes and the corresponding functions. We base the explanations on an accompanying example of linear regression. To face the challenges to database systems arising from array-like data, we propose such solutions as integrating ArrayQL as stored procedures to unify the relational and array perspectives.","PeriodicalId":276832,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning - DEEM'19","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"MLearn\",\"authors\":\"M. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann, Thomas Neumann\",\"doi\":\"10.1145/3329486.3329494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper outlines the requirements of our ML2SQL compiler that allows a dedicated machine learning language (MLearn) to be run on different target architectures. The language was designed to cover an end-to-end machine learning process, including initial data curation, with the focus on moving computations inside the core of database systems. To move computations to the data, we explain the architecture of a compiler that translates into target specific user-defined-functions for the PostgreSQL and HyPer database systems. For computations inside user-defined-functions, we explain the necessary tensor datatypes and the corresponding functions. We base the explanations on an accompanying example of linear regression. To face the challenges to database systems arising from array-like data, we propose such solutions as integrating ArrayQL as stored procedures to unify the relational and array perspectives.\",\"PeriodicalId\":276832,\"journal\":{\"name\":\"Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning - DEEM'19\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning - DEEM'19\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3329486.3329494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning - DEEM'19","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3329486.3329494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MLearn
This paper outlines the requirements of our ML2SQL compiler that allows a dedicated machine learning language (MLearn) to be run on different target architectures. The language was designed to cover an end-to-end machine learning process, including initial data curation, with the focus on moving computations inside the core of database systems. To move computations to the data, we explain the architecture of a compiler that translates into target specific user-defined-functions for the PostgreSQL and HyPer database systems. For computations inside user-defined-functions, we explain the necessary tensor datatypes and the corresponding functions. We base the explanations on an accompanying example of linear regression. To face the challenges to database systems arising from array-like data, we propose such solutions as integrating ArrayQL as stored procedures to unify the relational and array perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MLearn
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1