首页 > 最新文献

Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning - DEEM'19最新文献

英文 中文
MLearn MLearn
M. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann, Thomas Neumann
This paper outlines the requirements of our ML2SQL compiler that allows a dedicated machine learning language (MLearn) to be run on different target architectures. The language was designed to cover an end-to-end machine learning process, including initial data curation, with the focus on moving computations inside the core of database systems. To move computations to the data, we explain the architecture of a compiler that translates into target specific user-defined-functions for the PostgreSQL and HyPer database systems. For computations inside user-defined-functions, we explain the necessary tensor datatypes and the corresponding functions. We base the explanations on an accompanying example of linear regression. To face the challenges to database systems arising from array-like data, we propose such solutions as integrating ArrayQL as stored procedures to unify the relational and array perspectives.
{"title":"MLearn","authors":"M. Schüle, Matthias Bungeroth, Alfons Kemper, Stephan Günnemann, Thomas Neumann","doi":"10.1145/3329486.3329494","DOIUrl":"https://doi.org/10.1145/3329486.3329494","url":null,"abstract":"This paper outlines the requirements of our ML2SQL compiler that allows a dedicated machine learning language (MLearn) to be run on different target architectures. The language was designed to cover an end-to-end machine learning process, including initial data curation, with the focus on moving computations inside the core of database systems. To move computations to the data, we explain the architecture of a compiler that translates into target specific user-defined-functions for the PostgreSQL and HyPer database systems. For computations inside user-defined-functions, we explain the necessary tensor datatypes and the corresponding functions. We base the explanations on an accompanying example of linear regression. To face the challenges to database systems arising from array-like data, we propose such solutions as integrating ArrayQL as stored procedures to unify the relational and array perspectives.","PeriodicalId":276832,"journal":{"name":"Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning - DEEM'19","volume":"39 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"115085592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
期刊
Proceedings of the 3rd International Workshop on Data Management for End-to-End Machine Learning - DEEM'19
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1