一种基于动能的无监督运动聚类特征

Suthasinee Nopparit, N. Pantuwong, Masanori Sugimoto
{"title":"一种基于动能的无监督运动聚类特征","authors":"Suthasinee Nopparit, N. Pantuwong, Masanori Sugimoto","doi":"10.1109/ICITEED.2013.6676202","DOIUrl":null,"url":null,"abstract":"Motion databases usually contain sequences of movements and searching these vast databases is not an easy task. Motion clustering can reduce this difficulty by grouping sample movements into various motion groups containing similar actions. The pose distance is often used as a feature during motion-clustering tasks. However, the main weakness of this strategy is its computational complexity. Query motions are also required to cluster motion sequences. To address these problems, we propose a motion-clustering algorithm based on the use of kinetic energy to cluster sample motions. Our method does not require query motions during the clustering process, so the clustering results can be generated without supervision. Our experimental results confirmed that our proposed method delivered comparable performance to pose distance-based methods, while its computational complexity was significantly lower than that of existing methods.","PeriodicalId":204082,"journal":{"name":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","volume":"116 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A kinetic energy-based feature for unsupervised motion clustering\",\"authors\":\"Suthasinee Nopparit, N. Pantuwong, Masanori Sugimoto\",\"doi\":\"10.1109/ICITEED.2013.6676202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motion databases usually contain sequences of movements and searching these vast databases is not an easy task. Motion clustering can reduce this difficulty by grouping sample movements into various motion groups containing similar actions. The pose distance is often used as a feature during motion-clustering tasks. However, the main weakness of this strategy is its computational complexity. Query motions are also required to cluster motion sequences. To address these problems, we propose a motion-clustering algorithm based on the use of kinetic energy to cluster sample motions. Our method does not require query motions during the clustering process, so the clustering results can be generated without supervision. Our experimental results confirmed that our proposed method delivered comparable performance to pose distance-based methods, while its computational complexity was significantly lower than that of existing methods.\",\"PeriodicalId\":204082,\"journal\":{\"name\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"volume\":\"116 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITEED.2013.6676202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Information Technology and Electrical Engineering (ICITEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITEED.2013.6676202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

运动数据库通常包含运动序列,搜索这些庞大的数据库并不是一件容易的事。运动聚类可以通过将样本运动分组到包含相似动作的不同运动组中来减少这种困难。姿态距离是运动聚类任务中常用的一个特征。然而,这种策略的主要缺点是其计算复杂性。查询运动也需要对运动序列进行聚类。为了解决这些问题,我们提出了一种基于动能聚类样本运动的运动聚类算法。我们的方法在聚类过程中不需要查询运动,因此可以在没有监督的情况下生成聚类结果。实验结果表明,该方法的性能与基于姿态距离的方法相当,且计算复杂度明显低于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A kinetic energy-based feature for unsupervised motion clustering
Motion databases usually contain sequences of movements and searching these vast databases is not an easy task. Motion clustering can reduce this difficulty by grouping sample movements into various motion groups containing similar actions. The pose distance is often used as a feature during motion-clustering tasks. However, the main weakness of this strategy is its computational complexity. Query motions are also required to cluster motion sequences. To address these problems, we propose a motion-clustering algorithm based on the use of kinetic energy to cluster sample motions. Our method does not require query motions during the clustering process, so the clustering results can be generated without supervision. Our experimental results confirmed that our proposed method delivered comparable performance to pose distance-based methods, while its computational complexity was significantly lower than that of existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Thermal unit commitment solution using genetic algorithm combined with the principle of tabu search and priority list method Using estimated arithmetic means of accuracies to select features for face-based gender classification Analysis of factors influencing the mobile technology acceptance for library information services: Conceptual model News recommendation in Indonesian language based on user click behavior A kinetic energy-based feature for unsupervised motion clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1