利用数字全息显微镜的时空细胞动力学分析自动诊断镰状细胞病的综述

T. O’Connor, B. Javidi, A. Markman, A. Anand, B. Andemariam
{"title":"利用数字全息显微镜的时空细胞动力学分析自动诊断镰状细胞病的综述","authors":"T. O’Connor, B. Javidi, A. Markman, A. Anand, B. Andemariam","doi":"10.1117/12.2521150","DOIUrl":null,"url":null,"abstract":"We overview a previously reported system for automated diagnosis of sickle cell disease based on red blood cell (RBC) membrane fluctuations measured via digital holographic microscopy. A low-cost, compact, 3D-printed shearing interferometer is used to record video holograms of RBCs. Each hologram frame is reconstructed in order to form a spatio-temporal data cube from which features regarding membrane fluctuations are extracted. The motility-based features are combined with static morphology-based cell features and inputted into a random forest classifier which outputs the disease state of the cell with high accuracy.","PeriodicalId":350781,"journal":{"name":"Three-Dimensional Imaging, Visualization, and Display 2019","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Overview of automated sickle cell disease diagnosis by analysis of spatio-temporal cell dynamics in digital holographic microscopy\",\"authors\":\"T. O’Connor, B. Javidi, A. Markman, A. Anand, B. Andemariam\",\"doi\":\"10.1117/12.2521150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We overview a previously reported system for automated diagnosis of sickle cell disease based on red blood cell (RBC) membrane fluctuations measured via digital holographic microscopy. A low-cost, compact, 3D-printed shearing interferometer is used to record video holograms of RBCs. Each hologram frame is reconstructed in order to form a spatio-temporal data cube from which features regarding membrane fluctuations are extracted. The motility-based features are combined with static morphology-based cell features and inputted into a random forest classifier which outputs the disease state of the cell with high accuracy.\",\"PeriodicalId\":350781,\"journal\":{\"name\":\"Three-Dimensional Imaging, Visualization, and Display 2019\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Three-Dimensional Imaging, Visualization, and Display 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2521150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Three-Dimensional Imaging, Visualization, and Display 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2521150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们概述了先前报道的基于数字全息显微镜测量的红细胞(RBC)膜波动的镰状细胞病自动诊断系统。一种低成本、紧凑的3d打印剪切干涉仪用于记录红细胞的视频全息图。重建每个全息图帧,以形成时空数据立方体,从中提取有关膜波动的特征。将基于运动的细胞特征与基于静态形态学的细胞特征相结合,输入到随机森林分类器中,该分类器以高精度输出细胞的疾病状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overview of automated sickle cell disease diagnosis by analysis of spatio-temporal cell dynamics in digital holographic microscopy
We overview a previously reported system for automated diagnosis of sickle cell disease based on red blood cell (RBC) membrane fluctuations measured via digital holographic microscopy. A low-cost, compact, 3D-printed shearing interferometer is used to record video holograms of RBCs. Each hologram frame is reconstructed in order to form a spatio-temporal data cube from which features regarding membrane fluctuations are extracted. The motility-based features are combined with static morphology-based cell features and inputted into a random forest classifier which outputs the disease state of the cell with high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Front Matter: Volume 10997 Compressive sensing with variable density sampling for 3D imaging Active 3D fluorescence imaging based on holography AR optics using two depths An overview of spatial-temporal human gesture recognition under degraded environments using integral imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1