A. R. Ghildina, P. A. Mikheyev, A. Chernyshov, N. I. Ufimtsev, V. N. Azyazov, M. Heaven
{"title":"稀有气体中811.5nm Ar线和811.3nm Kr线的压力展宽系数","authors":"A. R. Ghildina, P. A. Mikheyev, A. Chernyshov, N. I. Ufimtsev, V. N. Azyazov, M. Heaven","doi":"10.1117/12.2256708","DOIUrl":null,"url":null,"abstract":"This paper describes systematic measurements of pressure broadening coefficients for argon and krypton lines in an RF (radio-frequency) discharge plasma sustained in a mixture of inert gases. Using tunable diode laser spectroscopy we obtained experimental data for pressure broadening of argon and krypton lines. Pressure broadening coefficients were determined for Ar+Ne and Kr+Ne and Kr+Ar. For krypton, the isotopic structure of the line was taken into account and an appropriate fitting function was used to determine pressure broadening coefficients for the natural mixture of isotopes. These data may be used for diagnostics of the active medium of optically pumped all-rare-gas lasers.","PeriodicalId":293926,"journal":{"name":"International Symposium on High Power Laser Systems and Applications","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pressure broadening coefficients for the 811.5nm Ar line and 811.3nm Kr line in rare gases\",\"authors\":\"A. R. Ghildina, P. A. Mikheyev, A. Chernyshov, N. I. Ufimtsev, V. N. Azyazov, M. Heaven\",\"doi\":\"10.1117/12.2256708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes systematic measurements of pressure broadening coefficients for argon and krypton lines in an RF (radio-frequency) discharge plasma sustained in a mixture of inert gases. Using tunable diode laser spectroscopy we obtained experimental data for pressure broadening of argon and krypton lines. Pressure broadening coefficients were determined for Ar+Ne and Kr+Ne and Kr+Ar. For krypton, the isotopic structure of the line was taken into account and an appropriate fitting function was used to determine pressure broadening coefficients for the natural mixture of isotopes. These data may be used for diagnostics of the active medium of optically pumped all-rare-gas lasers.\",\"PeriodicalId\":293926,\"journal\":{\"name\":\"International Symposium on High Power Laser Systems and Applications\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on High Power Laser Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2256708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on High Power Laser Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2256708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pressure broadening coefficients for the 811.5nm Ar line and 811.3nm Kr line in rare gases
This paper describes systematic measurements of pressure broadening coefficients for argon and krypton lines in an RF (radio-frequency) discharge plasma sustained in a mixture of inert gases. Using tunable diode laser spectroscopy we obtained experimental data for pressure broadening of argon and krypton lines. Pressure broadening coefficients were determined for Ar+Ne and Kr+Ne and Kr+Ar. For krypton, the isotopic structure of the line was taken into account and an appropriate fitting function was used to determine pressure broadening coefficients for the natural mixture of isotopes. These data may be used for diagnostics of the active medium of optically pumped all-rare-gas lasers.