从其自相关函数和一个样本重构离散信号

Zhongze Wu, Yanda Li, Tong Chang
{"title":"从其自相关函数和一个样本重构离散信号","authors":"Zhongze Wu, Yanda Li, Tong Chang","doi":"10.1109/ICASSP.1987.1169525","DOIUrl":null,"url":null,"abstract":"This work follows the 'Discrete Signal Reconstruction from its Spectral Magnitude and Some Samples'[1]. The uniqueness of the discrete signal reconstruction from its autocorrelation function and one sample has been discussed in detail in this paper. Four theorems are presented. In addition, we provide an effective iterative algorithm recovering the discrete signal.","PeriodicalId":140810,"journal":{"name":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Discrete signal reconstruction from its autocorrelation function and one sample\",\"authors\":\"Zhongze Wu, Yanda Li, Tong Chang\",\"doi\":\"10.1109/ICASSP.1987.1169525\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work follows the 'Discrete Signal Reconstruction from its Spectral Magnitude and Some Samples'[1]. The uniqueness of the discrete signal reconstruction from its autocorrelation function and one sample has been discussed in detail in this paper. Four theorems are presented. In addition, we provide an effective iterative algorithm recovering the discrete signal.\",\"PeriodicalId\":140810,\"journal\":{\"name\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1987.1169525\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP '87. IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1987.1169525","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作遵循了“从其频谱幅度和一些样本中重建离散信号”[1]。本文详细讨论了离散信号自相关函数和单样本重构的唯一性。给出了四个定理。此外,我们还提供了一种有效的迭代算法来恢复离散信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discrete signal reconstruction from its autocorrelation function and one sample
This work follows the 'Discrete Signal Reconstruction from its Spectral Magnitude and Some Samples'[1]. The uniqueness of the discrete signal reconstruction from its autocorrelation function and one sample has been discussed in detail in this paper. Four theorems are presented. In addition, we provide an effective iterative algorithm recovering the discrete signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A high resolution data-adaptive time-frequency representation A fast prediction-error detector for estimating sparse-spike sequences Some applications of mathematical morphology to range imagery Parameter estimation using the autocorrelation of the discrete Fourier transform Array signal processing with interconnected Neuron-like elements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1