一种改进的Otsu阈值分割算法

Pei Yang, Wei Song, Xiaobing Zhao, Rui Zheng, L. Qingge
{"title":"一种改进的Otsu阈值分割算法","authors":"Pei Yang, Wei Song, Xiaobing Zhao, Rui Zheng, L. Qingge","doi":"10.1504/ijcse.2020.10029225","DOIUrl":null,"url":null,"abstract":"Image segmentation is widely used as a fundamental step for various image processing applications. This paper focuses on improving the famous image thresholding method named Otsu's algorithm. Based on the fact that threshold acquired by Otsu's algorithm tends to be closer to the class with larger intraclass variance when the foreground and background have large intraclass variance difference, an improved strategy is proposed to adjust the threshold bias. We analysed the relationship between pixel greyscale value and the change of cumulative pixel number, and selected the ratio of pixel grey level value to a certain cumulative pixel number as the adjusted threshold. Experiments using typical testing images were set up to verify the proposed method both quantitatively and qualitatively. Two widely used metrics named misclassification error (ME) and dice similarity coefficient (DSC) were adopted for quantitative evaluation, and both quantitative and qualitative results indicated that the proposed algorithm could better segment the testing images and get competitive misclassification error and DSC values compared with Otsu's method and its improved versions proposed by Hu and Gong (2009) and Xu et al. (2011), and the time consumption of our method can be significantly reduced.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"An improved Otsu threshold segmentation algorithm\",\"authors\":\"Pei Yang, Wei Song, Xiaobing Zhao, Rui Zheng, L. Qingge\",\"doi\":\"10.1504/ijcse.2020.10029225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Image segmentation is widely used as a fundamental step for various image processing applications. This paper focuses on improving the famous image thresholding method named Otsu's algorithm. Based on the fact that threshold acquired by Otsu's algorithm tends to be closer to the class with larger intraclass variance when the foreground and background have large intraclass variance difference, an improved strategy is proposed to adjust the threshold bias. We analysed the relationship between pixel greyscale value and the change of cumulative pixel number, and selected the ratio of pixel grey level value to a certain cumulative pixel number as the adjusted threshold. Experiments using typical testing images were set up to verify the proposed method both quantitatively and qualitatively. Two widely used metrics named misclassification error (ME) and dice similarity coefficient (DSC) were adopted for quantitative evaluation, and both quantitative and qualitative results indicated that the proposed algorithm could better segment the testing images and get competitive misclassification error and DSC values compared with Otsu's method and its improved versions proposed by Hu and Gong (2009) and Xu et al. (2011), and the time consumption of our method can be significantly reduced.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2020.10029225\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10029225","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

图像分割作为各种图像处理应用的基本步骤被广泛使用。本文主要对著名的图像阈值分割方法Otsu算法进行改进。基于Otsu算法获取的阈值在前景和背景的类内方差较大时趋向于更接近类内方差较大的类别,提出了一种改进的阈值偏差调整策略。分析了像素灰度值与累积像素数变化的关系,选择像素灰度值与一定累积像素数的比值作为调整阈值。利用典型的测试图像建立了实验,从定量和定性两个方面验证了所提出的方法。采用误分误差(ME)和dice similarity coefficient (DSC)这两个被广泛使用的度量指标进行定量评价,定量和定性结果均表明,与Otsu的方法及Hu and Gong(2009)和Xu et al.(2011)提出的改进版本相比,本文算法能够更好地分割测试图像,获得有竞争力的误分类误差和DSC值,并且可以显著减少我们方法的耗时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved Otsu threshold segmentation algorithm
Image segmentation is widely used as a fundamental step for various image processing applications. This paper focuses on improving the famous image thresholding method named Otsu's algorithm. Based on the fact that threshold acquired by Otsu's algorithm tends to be closer to the class with larger intraclass variance when the foreground and background have large intraclass variance difference, an improved strategy is proposed to adjust the threshold bias. We analysed the relationship between pixel greyscale value and the change of cumulative pixel number, and selected the ratio of pixel grey level value to a certain cumulative pixel number as the adjusted threshold. Experiments using typical testing images were set up to verify the proposed method both quantitatively and qualitatively. Two widely used metrics named misclassification error (ME) and dice similarity coefficient (DSC) were adopted for quantitative evaluation, and both quantitative and qualitative results indicated that the proposed algorithm could better segment the testing images and get competitive misclassification error and DSC values compared with Otsu's method and its improved versions proposed by Hu and Gong (2009) and Xu et al. (2011), and the time consumption of our method can be significantly reduced.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC-based lightweight mutual authentication protocol for fog enabled IoT system using three-way authentication procedure Gene selection and classification combining information gain ratio with fruit fly optimisation algorithm for single-cell RNA-seq data Attitude control of an unmanned patrol helicopter based on an optimised spiking neural membrane system for use in coal mines CEMP-IR: a novel location aware cache invalidation and replacement policy Prediction of consumer preference for the bottom of the pyramid using EEG-based deep model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1