利用IRECGA优化液热作业计划

D. Ganguly, S. Das, Abhik Hazra, M. Basu, Ashish Laddha
{"title":"利用IRECGA优化液热作业计划","authors":"D. Ganguly, S. Das, Abhik Hazra, M. Basu, Ashish Laddha","doi":"10.1109/ICRCICN.2017.8234483","DOIUrl":null,"url":null,"abstract":"Presented concise implements improved real coded genetic algorithmic technique (IRECGA) for determining optimalized operative planning (short spell, hour based) in a hydel-thermic network. The network comprises of hydel and thermic producers. Hydel producers are incorporated with back to back connected multiple tanks. Restricted operating sections possess boundings for hydel producers while the loading effect of valve point bounds thermic one. Genetic algorithmic technique (GEALGO) utilizes human chromosomes inbred operation. It incorporates an ability to establish the universal or very close to the universal optimized results. Implementation of the IRECGA enhances convergence speed and result quality. Its efficacy has been confirmed by obtaining results for the considered network. For confirming, IRECGA results have been matched up to that of other evolutionary techniques (EVOALG). Match up results assure the IRECGA superiority for this type of optimalization tasks.","PeriodicalId":166298,"journal":{"name":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimalized hydel-thermic operative planning using IRECGA\",\"authors\":\"D. Ganguly, S. Das, Abhik Hazra, M. Basu, Ashish Laddha\",\"doi\":\"10.1109/ICRCICN.2017.8234483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presented concise implements improved real coded genetic algorithmic technique (IRECGA) for determining optimalized operative planning (short spell, hour based) in a hydel-thermic network. The network comprises of hydel and thermic producers. Hydel producers are incorporated with back to back connected multiple tanks. Restricted operating sections possess boundings for hydel producers while the loading effect of valve point bounds thermic one. Genetic algorithmic technique (GEALGO) utilizes human chromosomes inbred operation. It incorporates an ability to establish the universal or very close to the universal optimized results. Implementation of the IRECGA enhances convergence speed and result quality. Its efficacy has been confirmed by obtaining results for the considered network. For confirming, IRECGA results have been matched up to that of other evolutionary techniques (EVOALG). Match up results assure the IRECGA superiority for this type of optimalization tasks.\",\"PeriodicalId\":166298,\"journal\":{\"name\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRCICN.2017.8234483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Third International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRCICN.2017.8234483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种改进的实数编码遗传算法技术(IRECGA),用于确定混合热网的最优操作计划(短时间、小时)。该网络包括水力发电和热力发电。混合式生产装置采用背靠背连接的多个储罐。限制工况段对水力发电机组有边界,而阀点的加载效应有边界。遗传算法技术(GEALGO)利用人类染色体的近交操作。它包含了建立通用或非常接近通用优化结果的能力。IRECGA的实现提高了收敛速度和结果质量。通过对所考虑的网络的结果验证了其有效性。为了证实这一点,IRECGA的结果与其他进化技术(EVOALG)的结果相匹配。匹配结果保证了IRECGA在这类优化任务中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimalized hydel-thermic operative planning using IRECGA
Presented concise implements improved real coded genetic algorithmic technique (IRECGA) for determining optimalized operative planning (short spell, hour based) in a hydel-thermic network. The network comprises of hydel and thermic producers. Hydel producers are incorporated with back to back connected multiple tanks. Restricted operating sections possess boundings for hydel producers while the loading effect of valve point bounds thermic one. Genetic algorithmic technique (GEALGO) utilizes human chromosomes inbred operation. It incorporates an ability to establish the universal or very close to the universal optimized results. Implementation of the IRECGA enhances convergence speed and result quality. Its efficacy has been confirmed by obtaining results for the considered network. For confirming, IRECGA results have been matched up to that of other evolutionary techniques (EVOALG). Match up results assure the IRECGA superiority for this type of optimalization tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RGB image encryption using hyper chaotic system Characterisation of wireless network traffic: Fractality and stationarity Security risk assessment in online social networking: A detailed survey Optimalized hydel-thermic operative planning using IRECGA Designing an enhanced ZRP algorithm for MANET and simulation using OPNET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1